Abstract
We have previously reported three Caenorhabditis elegans genes ( gly-12, gly-13 and gly-14 ) encoding UDP- N -acetyl-D-glucosamine:alpha-3-D-mannoside beta1,2- N -acetylglucosaminyltransferase I (GnT I), an enzyme essential for hybrid and complex N-glycan synthesis. GLY-13 was shown to be the major GnT I in worms and to be the only GnT I cloned to date which can act on [Manalpha1,6(Manalpha1,3)Manalpha1,6](Manalpha1,3)Manbeta1, 4GlcNAcbeta1,4GlcNAc-R, but not on Manalpha1,6(Manalpha1,3)Manbeta1- O -R substrates. We now report the kinetic constants, bivalent-metal-ion requirements, and optimal pH, temperature and Mn(2+) concentration for this unusual enzyme. C. elegans glycoproteins are rich in oligomannose (Man(6-9)GlcNAc(2)) and 'paucimannose' Man(3-5)GlcNAc(2)(+/-Fuc) N-glycans, but contain only small amounts of complex and hybrid N-glycans. We show that the synthesis of paucimannose Man(3)GlcNAc(2) requires the prior actions of GnT I, alpha3,6-mannosidase II and a membrane-bound beta- N -acetylglucosaminidase similar to an enzyme previously reported in insects. The beta- N -acetylglucosaminidase removes terminal N -acetyl-D-glucosamine from the GlcNAcbeta1, 2Manalpha1,3Manbeta- arm of Manalpha1,6(GlcNAcbeta1,2Manalpha1,3) Manbeta1,4GlcNAcbeta1,4GlcNAc-R to produce paucimannose Man(3)GlcNAc(2) N-glycan. N -acetyl-D-glucosamine removal was inhibited by two N -acetylglucosaminidase inhibitors. Terminal GlcNAc was not released from [Manalpha1,6(Manalpha1,3)Manalpha 1,6] (GlcNAcbeta1,2Manalpha1,3)Manbeta1,4GlcNAcbeta1,4GlcNAc-R nor from the GlcNAcbeta1,2Manalpha1,6Manbeta- arm. These findings indicate that GLY-13 plays an important role in the synthesis of N-glycans by C. elegans and that therefore the worm should prove to be a suitable model for the study of the role of GnT I in nematode development.
Full Text
The Full Text of this article is available as a PDF (253.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akama Tomoya O., Nakagawa Hiroaki, Sugihara Kazuhiro, Narisawa Sonoko, Ohyama Chikara, Nishimura Shin-Ichiro, O'Brien Deborah A., Moremen Kelley W., Millan Jose Luis, Fukuda Michiko N. Germ cell survival through carbohydrate-mediated interaction with Sertoli cells. Science. 2002 Jan 4;295(5552):124–127. doi: 10.1126/science.1065570. [DOI] [PubMed] [Google Scholar]
- Allen S. D., Tsai D., Schachter H. Control of glycoprotein synthesis. The in vitro synthesis by hen oviduct membrane preparations of hybrid asparagine-linked oligosaccharides containing 5 mannose residues. J Biol Chem. 1984 Jun 10;259(11):6984–6990. [PubMed] [Google Scholar]
- Altmann F., Fabini G., Ahorn H., Wilson I. B. Genetic model organisms in the study of N-glycans. Biochimie. 2001 Aug;83(8):703–712. doi: 10.1016/s0300-9084(01)01297-4. [DOI] [PubMed] [Google Scholar]
- Altmann F., Kornfeld G., Dalik T., Staudacher E., Glössl J. Processing of asparagine-linked oligosaccharides in insect cells. N-acetylglucosaminyltransferase I and II activities in cultured lepidopteran cells. Glycobiology. 1993 Dec;3(6):619–625. doi: 10.1093/glycob/3.6.619. [DOI] [PubMed] [Google Scholar]
- Altmann F., März L. Processing of asparagine-linked oligosaccharides in insect cells: evidence for alpha-mannosidase II. Glycoconj J. 1995 Apr;12(2):150–155. doi: 10.1007/BF00731359. [DOI] [PubMed] [Google Scholar]
- Altmann F., Schwihla H., Staudacher E., Glössl J., März L. Insect cells contain an unusual, membrane-bound beta-N-acetylglucosaminidase probably involved in the processing of protein N-glycans. J Biol Chem. 1995 Jul 21;270(29):17344–17349. doi: 10.1074/jbc.270.29.17344. [DOI] [PubMed] [Google Scholar]
- Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen S., Zhou S., Sarkar M., Spence A. M., Schachter H. Expression of three Caenorhabditis elegans N-acetylglucosaminyltransferase I genes during development. J Biol Chem. 1999 Jan 1;274(1):288–297. doi: 10.1074/jbc.274.1.288. [DOI] [PubMed] [Google Scholar]
- Chen Shihao, Tan Jenny, Reinhold Vernon N., Spence Andrew M., Schachter Harry. UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I and UDP-N-acetylglucosamine:alpha-6-D-mannoside beta-1,2-N-acetylglucosaminyltransferase II in Caenorhabditis elegans. Biochim Biophys Acta. 2002 Dec 19;1573(3):271–279. doi: 10.1016/s0304-4165(02)00393-8. [DOI] [PubMed] [Google Scholar]
- Chui D., Oh-Eda M., Liao Y. F., Panneerselvam K., Lal A., Marek K. W., Freeze H. H., Moremen K. W., Fukuda M. N., Marth J. D. Alpha-mannosidase-II deficiency results in dyserythropoiesis and unveils an alternate pathway in oligosaccharide biosynthesis. Cell. 1997 Jul 11;90(1):157–167. doi: 10.1016/s0092-8674(00)80322-0. [DOI] [PubMed] [Google Scholar]
- Church D. L., Guan K. L., Lambie E. J. Three genes of the MAP kinase cascade, mek-2, mpk-1/sur-1 and let-60 ras, are required for meiotic cell cycle progression in Caenorhabditis elegans. Development. 1995 Aug;121(8):2525–2535. doi: 10.1242/dev.121.8.2525. [DOI] [PubMed] [Google Scholar]
- Cipollo John F., Costello Catherine E., Hirschberg Carlos B. The fine structure of Caenorhabditis elegans N-glycans. J Biol Chem. 2002 Oct 1;277(51):49143–49157. doi: 10.1074/jbc.M208020200. [DOI] [PubMed] [Google Scholar]
- Fu D., Chen L., O'Neill R. A. A detailed structural characterization of ribonuclease B oligosaccharides by 1H NMR spectroscopy and mass spectrometry. Carbohydr Res. 1994 Aug 17;261(2):173–186. doi: 10.1016/0008-6215(94)84015-6. [DOI] [PubMed] [Google Scholar]
- Hagen F. K., Nehrke K. cDNA cloning and expression of a family of UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase sequence homologs from Caenorhabditis elegans. J Biol Chem. 1998 Apr 3;273(14):8268–8277. doi: 10.1074/jbc.273.14.8268. [DOI] [PubMed] [Google Scholar]
- Haslam Stuart M., Gems David, Morris Howard R., Dell Anne. The glycomes of Caenorhabditis elegans and other model organisms. Biochem Soc Symp. 2002;(69):117–134. [PubMed] [Google Scholar]
- Ioffe E., Stanley P. Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):728–732. doi: 10.1073/pnas.91.2.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson K. D., Chrispeels M. J. Substrate Specificities of N-Acetylglucosaminyl-, Fucosyl-, and Xylosyltransferases that Modify Glycoproteins in the Golgi Apparatus of Bean Cotyledons. Plant Physiol. 1987 Aug;84(4):1301–1308. doi: 10.1104/pp.84.4.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khoo K. H., Huang H. H., Lee K. M. Characteristic structural features of schistosome cercarial N-glycans: expression of Lewis X and core xylosylation. Glycobiology. 2001 Feb;11(2):149–163. doi: 10.1093/glycob/11.2.149. [DOI] [PubMed] [Google Scholar]
- Kolarich D., Altmann F. N-Glycan analysis by matrix-assisted laser desorption/ionization mass spectrometry of electrophoretically separated nonmammalian proteins: application to peanut allergen Ara h 1 and olive pollen allergen Ole e 1. Anal Biochem. 2000 Oct 1;285(1):64–75. doi: 10.1006/abio.2000.4737. [DOI] [PubMed] [Google Scholar]
- Kubelka V., Altmann F., Staudacher E., Tretter V., März L., Hård K., Kamerling J. P., Vliegenthart J. F. Primary structures of the N-linked carbohydrate chains from honeybee venom phospholipase A2. Eur J Biochem. 1993 May 1;213(3):1193–1204. doi: 10.1111/j.1432-1033.1993.tb17870.x. [DOI] [PubMed] [Google Scholar]
- Leiter H., Mucha J., Staudacher E., Grimm R., Glössl J., Altmann F. Purification, cDNA cloning, and expression of GDP-L-Fuc:Asn-linked GlcNAc alpha1,3-fucosyltransferase from mung beans. J Biol Chem. 1999 Jul 30;274(31):21830–21839. doi: 10.1074/jbc.274.31.21830. [DOI] [PubMed] [Google Scholar]
- Mello C., Fire A. DNA transformation. Methods Cell Biol. 1995;48:451–482. [PubMed] [Google Scholar]
- Metzler M., Gertz A., Sarkar M., Schachter H., Schrader J. W., Marth J. D. Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantation development. EMBO J. 1994 May 1;13(9):2056–2065. doi: 10.1002/j.1460-2075.1994.tb06480.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Misago M., Liao Y. F., Kudo S., Eto S., Mattei M. G., Moremen K. W., Fukuda M. N. Molecular cloning and expression of cDNAs encoding human alpha-mannosidase II and a previously unrecognized alpha-mannosidase IIx isozyme. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11766–11770. doi: 10.1073/pnas.92.25.11766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Narasimhan S., Wilson J. R., Martin E., Schachter H. A structural basis for four distinct elution profiles on concanavalin A--Sepharose affinity chromatography of glycopeptides. Can J Biochem. 1979 Jan;57(1):83–96. doi: 10.1139/o79-011. [DOI] [PubMed] [Google Scholar]
- Natsuka Shunji, Adachi Jiro, Kawaguchi Masahumi, Nakakita Shin-ichi, Hase Sumihiro, Ichikawa Akira, Ikura Koji. Structural analysis of N-linked glycans in Caenorhabditis elegans. J Biochem. 2002 Jun;131(6):807–813. doi: 10.1093/oxfordjournals.jbchem.a003169. [DOI] [PubMed] [Google Scholar]
- Ogawa R., Misago M., Fukuda M. N., Kudo S., Tsukada J., Morimoto I., Eto S. Structure and transcriptional regulation of human alpha-mannosidase IIX (alpha-mannosidase II isotype) gene. Eur J Biochem. 1996 Dec 15;242(3):446–453. doi: 10.1111/j.1432-1033.1996.446rr.x. [DOI] [PubMed] [Google Scholar]
- Oh-Eda M., Nakagawa H., Akama T. O., Lowitz K., Misago M., Moremen K. W., Fukuda M. N. Overexpression of the Golgi-localized enzyme alpha-mannosidase IIx in Chinese hamster ovary cells results in the conversion of hexamannosyl-N-acetylchitobiose to tetramannosyl-N-acetylchitobiose in the N-glycan-processing pathway. Eur J Biochem. 2001 Mar;268(5):1280–1288. doi: 10.1046/j.1432-1327.2001.01992.x. [DOI] [PubMed] [Google Scholar]
- Reck F., Springer M., Paulsen H., Brockhausen I., Sarkar M., Schachter H. Synthesis of tetrasaccharide analogues of the N-glycan substrate of beta-(1-->2)-N-acetylglucosaminyltransferase II using trisaccharide precursors and recombinant beta-(1-->2)-N-acetylglucosaminyltransferase I. Carbohydr Res. 1994 Jun 2;259(1):93–101. doi: 10.1016/0008-6215(94)84200-0. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarkar M. Expression of recombinant rabbit UDP-GlcNAc: alpha 3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I catalytic domain in Sf9 insect cells. Glycoconj J. 1994 Jun;11(3):204–209. doi: 10.1007/BF00731219. [DOI] [PubMed] [Google Scholar]
- Sarkar M., Schachter H. Cloning and expression of Drosophila melanogaster UDP-GlcNAc:alpha-3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I. Biol Chem. 2001 Feb;382(2):209–217. doi: 10.1515/BC.2001.028. [DOI] [PubMed] [Google Scholar]
- Schachter H. The 'yellow brick road' to branched complex N-glycans. Glycobiology. 1991 Nov;1(5):453–461. doi: 10.1093/glycob/1.5.453. [DOI] [PubMed] [Google Scholar]
- Schachter Harry, Chen Shihao, Zhang Wenli, Spence Andrew M., Zhu Shaoxian, Callahan John W., Mahuran Don J., Fan Xiaolian, Bagshaw Rick D., She Yi-Min. Functional post-translational proteomics approach to study the role of N-glycans in the development of Caenorhabditis elegans. Biochem Soc Symp. 2002;(69):1–21. doi: 10.1042/bss0690001. [DOI] [PubMed] [Google Scholar]
- Staudacher E., Dalik T., Wawra P., Altmann F., März L. Functional purification and characterization of a GDP-fucose: beta-N-acetylglucosamine (Fuc to Asn linked GlcNAc) alpha 1,3-fucosyltransferase from mung beans. Glycoconj J. 1995 Dec;12(6):780–786. doi: 10.1007/BF00731239. [DOI] [PubMed] [Google Scholar]
- Staudacher E., Kubelka V., März L. Distinct N-glycan fucosylation potentials of three lepidopteran cell lines. Eur J Biochem. 1992 Aug 1;207(3):987–993. doi: 10.1111/j.1432-1033.1992.tb17134.x. [DOI] [PubMed] [Google Scholar]
- Strasser R., Mucha J., Schwihla H., Altmann F., Glössl J., Steinkellner H. Molecular cloning and characterization of cDNA coding for beta1, 2N-acetylglucosaminyltransferase I (GlcNAc-TI) from Nicotiana tabacum. Glycobiology. 1999 Aug;9(8):779–785. doi: 10.1093/glycob/9.8.779. [DOI] [PubMed] [Google Scholar]
- Tan J., Dunn J., Jaeken J., Schachter H. Mutations in the MGAT2 gene controlling complex N-glycan synthesis cause carbohydrate-deficient glycoprotein syndrome type II, an autosomal recessive disease with defective brain development. Am J Hum Genet. 1996 Oct;59(4):810–817. [PMC free article] [PubMed] [Google Scholar]
- Vella G. J., Paulsen H., Schachter H. Control of glycoprotein synthesis. IX. A terminal Man alpha l-3Man beta 1- sequence in the substrate is the minimum requirement for UDP-N-acetyl-D-glucosamine: alpha-D-mannoside (GlcNAc to Man alpha 1-3) beta 2-N-acetylglucosaminyltransferase I. Can J Biochem Cell Biol. 1984 Jun;62(6):409–417. doi: 10.1139/o84-056. [DOI] [PubMed] [Google Scholar]
- Vitale A., Chrispeels M. J. Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies. J Cell Biol. 1984 Jul;99(1 Pt 1):133–140. doi: 10.1083/jcb.99.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner R., Geyer H., Geyer R., Klenk H. D. N-acetyl-beta-glucosaminidase accounts for differences in glycosylation of influenza virus hemagglutinin expressed in insect cells from a baculovirus vector. J Virol. 1996 Jun;70(6):4103–4109. doi: 10.1128/jvi.70.6.4103-4109.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe Satoko, Kokuho Takehiro, Takahashi Hitomi, Takahashi Masashi, Kubota Takayuki, Inumaru Shigeki. Sialylation of N-glycans on the recombinant proteins expressed by a baculovirus-insect cell system under beta-N-acetylglucosaminidase inhibition. J Biol Chem. 2001 Dec 6;277(7):5090–5093. doi: 10.1074/jbc.M110548200. [DOI] [PubMed] [Google Scholar]
- Wilson I. B., Zeleny R., Kolarich D., Staudacher E., Stroop C. J., Kamerling J. P., Altmann F. Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, core alpha1,3-linked fucose and xylose substitutions. Glycobiology. 2001 Apr;11(4):261–274. doi: 10.1093/glycob/11.4.261. [DOI] [PubMed] [Google Scholar]
- Wilson J. R., Williams D., Schachter H. The control of glycoprotein synthesis: N-acetylglucosamine linkage to a mannose residue as a signal for the attachment of L-fucose to the asparagine-linked N-acetylglucosamine residue of glycopeptide from alpha1-acid glycoprotein. Biochem Biophys Res Commun. 1976 Oct 4;72(3):909–916. doi: 10.1016/s0006-291x(76)80218-5. [DOI] [PubMed] [Google Scholar]
- van den Elsen J. M., Kuntz D. A., Rose D. R. Structure of Golgi alpha-mannosidase II: a target for inhibition of growth and metastasis of cancer cells. EMBO J. 2001 Jun 15;20(12):3008–3017. doi: 10.1093/emboj/20.12.3008. [DOI] [PMC free article] [PubMed] [Google Scholar]