Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 15;372(Pt 1):53–64. doi: 10.1042/BJ20021931

Synthesis of paucimannose N-glycans by Caenorhabditis elegans requires prior actions of UDP-N-acetyl-D-glucosamine:alpha-3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I, alpha3,6-mannosidase II and a specific membrane-bound beta-N-acetylglucosaminidase.

Wenli Zhang 1, Pinjiang Cao 1, Shihao Chen 1, Andrew M Spence 1, Shaoxian Zhu 1, Erika Staudacher 1, Harry Schachter 1
PMCID: PMC1223384  PMID: 12603202

Abstract

We have previously reported three Caenorhabditis elegans genes ( gly-12, gly-13 and gly-14 ) encoding UDP- N -acetyl-D-glucosamine:alpha-3-D-mannoside beta1,2- N -acetylglucosaminyltransferase I (GnT I), an enzyme essential for hybrid and complex N-glycan synthesis. GLY-13 was shown to be the major GnT I in worms and to be the only GnT I cloned to date which can act on [Manalpha1,6(Manalpha1,3)Manalpha1,6](Manalpha1,3)Manbeta1, 4GlcNAcbeta1,4GlcNAc-R, but not on Manalpha1,6(Manalpha1,3)Manbeta1- O -R substrates. We now report the kinetic constants, bivalent-metal-ion requirements, and optimal pH, temperature and Mn(2+) concentration for this unusual enzyme. C. elegans glycoproteins are rich in oligomannose (Man(6-9)GlcNAc(2)) and 'paucimannose' Man(3-5)GlcNAc(2)(+/-Fuc) N-glycans, but contain only small amounts of complex and hybrid N-glycans. We show that the synthesis of paucimannose Man(3)GlcNAc(2) requires the prior actions of GnT I, alpha3,6-mannosidase II and a membrane-bound beta- N -acetylglucosaminidase similar to an enzyme previously reported in insects. The beta- N -acetylglucosaminidase removes terminal N -acetyl-D-glucosamine from the GlcNAcbeta1, 2Manalpha1,3Manbeta- arm of Manalpha1,6(GlcNAcbeta1,2Manalpha1,3) Manbeta1,4GlcNAcbeta1,4GlcNAc-R to produce paucimannose Man(3)GlcNAc(2) N-glycan. N -acetyl-D-glucosamine removal was inhibited by two N -acetylglucosaminidase inhibitors. Terminal GlcNAc was not released from [Manalpha1,6(Manalpha1,3)Manalpha 1,6] (GlcNAcbeta1,2Manalpha1,3)Manbeta1,4GlcNAcbeta1,4GlcNAc-R nor from the GlcNAcbeta1,2Manalpha1,6Manbeta- arm. These findings indicate that GLY-13 plays an important role in the synthesis of N-glycans by C. elegans and that therefore the worm should prove to be a suitable model for the study of the role of GnT I in nematode development.

Full Text

The Full Text of this article is available as a PDF (253.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akama Tomoya O., Nakagawa Hiroaki, Sugihara Kazuhiro, Narisawa Sonoko, Ohyama Chikara, Nishimura Shin-Ichiro, O'Brien Deborah A., Moremen Kelley W., Millan Jose Luis, Fukuda Michiko N. Germ cell survival through carbohydrate-mediated interaction with Sertoli cells. Science. 2002 Jan 4;295(5552):124–127. doi: 10.1126/science.1065570. [DOI] [PubMed] [Google Scholar]
  2. Allen S. D., Tsai D., Schachter H. Control of glycoprotein synthesis. The in vitro synthesis by hen oviduct membrane preparations of hybrid asparagine-linked oligosaccharides containing 5 mannose residues. J Biol Chem. 1984 Jun 10;259(11):6984–6990. [PubMed] [Google Scholar]
  3. Altmann F., Fabini G., Ahorn H., Wilson I. B. Genetic model organisms in the study of N-glycans. Biochimie. 2001 Aug;83(8):703–712. doi: 10.1016/s0300-9084(01)01297-4. [DOI] [PubMed] [Google Scholar]
  4. Altmann F., Kornfeld G., Dalik T., Staudacher E., Glössl J. Processing of asparagine-linked oligosaccharides in insect cells. N-acetylglucosaminyltransferase I and II activities in cultured lepidopteran cells. Glycobiology. 1993 Dec;3(6):619–625. doi: 10.1093/glycob/3.6.619. [DOI] [PubMed] [Google Scholar]
  5. Altmann F., März L. Processing of asparagine-linked oligosaccharides in insect cells: evidence for alpha-mannosidase II. Glycoconj J. 1995 Apr;12(2):150–155. doi: 10.1007/BF00731359. [DOI] [PubMed] [Google Scholar]
  6. Altmann F., Schwihla H., Staudacher E., Glössl J., März L. Insect cells contain an unusual, membrane-bound beta-N-acetylglucosaminidase probably involved in the processing of protein N-glycans. J Biol Chem. 1995 Jul 21;270(29):17344–17349. doi: 10.1074/jbc.270.29.17344. [DOI] [PubMed] [Google Scholar]
  7. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen S., Zhou S., Sarkar M., Spence A. M., Schachter H. Expression of three Caenorhabditis elegans N-acetylglucosaminyltransferase I genes during development. J Biol Chem. 1999 Jan 1;274(1):288–297. doi: 10.1074/jbc.274.1.288. [DOI] [PubMed] [Google Scholar]
  9. Chen Shihao, Tan Jenny, Reinhold Vernon N., Spence Andrew M., Schachter Harry. UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I and UDP-N-acetylglucosamine:alpha-6-D-mannoside beta-1,2-N-acetylglucosaminyltransferase II in Caenorhabditis elegans. Biochim Biophys Acta. 2002 Dec 19;1573(3):271–279. doi: 10.1016/s0304-4165(02)00393-8. [DOI] [PubMed] [Google Scholar]
  10. Chui D., Oh-Eda M., Liao Y. F., Panneerselvam K., Lal A., Marek K. W., Freeze H. H., Moremen K. W., Fukuda M. N., Marth J. D. Alpha-mannosidase-II deficiency results in dyserythropoiesis and unveils an alternate pathway in oligosaccharide biosynthesis. Cell. 1997 Jul 11;90(1):157–167. doi: 10.1016/s0092-8674(00)80322-0. [DOI] [PubMed] [Google Scholar]
  11. Church D. L., Guan K. L., Lambie E. J. Three genes of the MAP kinase cascade, mek-2, mpk-1/sur-1 and let-60 ras, are required for meiotic cell cycle progression in Caenorhabditis elegans. Development. 1995 Aug;121(8):2525–2535. doi: 10.1242/dev.121.8.2525. [DOI] [PubMed] [Google Scholar]
  12. Cipollo John F., Costello Catherine E., Hirschberg Carlos B. The fine structure of Caenorhabditis elegans N-glycans. J Biol Chem. 2002 Oct 1;277(51):49143–49157. doi: 10.1074/jbc.M208020200. [DOI] [PubMed] [Google Scholar]
  13. Fu D., Chen L., O'Neill R. A. A detailed structural characterization of ribonuclease B oligosaccharides by 1H NMR spectroscopy and mass spectrometry. Carbohydr Res. 1994 Aug 17;261(2):173–186. doi: 10.1016/0008-6215(94)84015-6. [DOI] [PubMed] [Google Scholar]
  14. Hagen F. K., Nehrke K. cDNA cloning and expression of a family of UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase sequence homologs from Caenorhabditis elegans. J Biol Chem. 1998 Apr 3;273(14):8268–8277. doi: 10.1074/jbc.273.14.8268. [DOI] [PubMed] [Google Scholar]
  15. Haslam Stuart M., Gems David, Morris Howard R., Dell Anne. The glycomes of Caenorhabditis elegans and other model organisms. Biochem Soc Symp. 2002;(69):117–134. [PubMed] [Google Scholar]
  16. Ioffe E., Stanley P. Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):728–732. doi: 10.1073/pnas.91.2.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnson K. D., Chrispeels M. J. Substrate Specificities of N-Acetylglucosaminyl-, Fucosyl-, and Xylosyltransferases that Modify Glycoproteins in the Golgi Apparatus of Bean Cotyledons. Plant Physiol. 1987 Aug;84(4):1301–1308. doi: 10.1104/pp.84.4.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Khoo K. H., Huang H. H., Lee K. M. Characteristic structural features of schistosome cercarial N-glycans: expression of Lewis X and core xylosylation. Glycobiology. 2001 Feb;11(2):149–163. doi: 10.1093/glycob/11.2.149. [DOI] [PubMed] [Google Scholar]
  19. Kolarich D., Altmann F. N-Glycan analysis by matrix-assisted laser desorption/ionization mass spectrometry of electrophoretically separated nonmammalian proteins: application to peanut allergen Ara h 1 and olive pollen allergen Ole e 1. Anal Biochem. 2000 Oct 1;285(1):64–75. doi: 10.1006/abio.2000.4737. [DOI] [PubMed] [Google Scholar]
  20. Kubelka V., Altmann F., Staudacher E., Tretter V., März L., Hård K., Kamerling J. P., Vliegenthart J. F. Primary structures of the N-linked carbohydrate chains from honeybee venom phospholipase A2. Eur J Biochem. 1993 May 1;213(3):1193–1204. doi: 10.1111/j.1432-1033.1993.tb17870.x. [DOI] [PubMed] [Google Scholar]
  21. Leiter H., Mucha J., Staudacher E., Grimm R., Glössl J., Altmann F. Purification, cDNA cloning, and expression of GDP-L-Fuc:Asn-linked GlcNAc alpha1,3-fucosyltransferase from mung beans. J Biol Chem. 1999 Jul 30;274(31):21830–21839. doi: 10.1074/jbc.274.31.21830. [DOI] [PubMed] [Google Scholar]
  22. Mello C., Fire A. DNA transformation. Methods Cell Biol. 1995;48:451–482. [PubMed] [Google Scholar]
  23. Metzler M., Gertz A., Sarkar M., Schachter H., Schrader J. W., Marth J. D. Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantation development. EMBO J. 1994 May 1;13(9):2056–2065. doi: 10.1002/j.1460-2075.1994.tb06480.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Misago M., Liao Y. F., Kudo S., Eto S., Mattei M. G., Moremen K. W., Fukuda M. N. Molecular cloning and expression of cDNAs encoding human alpha-mannosidase II and a previously unrecognized alpha-mannosidase IIx isozyme. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11766–11770. doi: 10.1073/pnas.92.25.11766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Narasimhan S., Wilson J. R., Martin E., Schachter H. A structural basis for four distinct elution profiles on concanavalin A--Sepharose affinity chromatography of glycopeptides. Can J Biochem. 1979 Jan;57(1):83–96. doi: 10.1139/o79-011. [DOI] [PubMed] [Google Scholar]
  26. Natsuka Shunji, Adachi Jiro, Kawaguchi Masahumi, Nakakita Shin-ichi, Hase Sumihiro, Ichikawa Akira, Ikura Koji. Structural analysis of N-linked glycans in Caenorhabditis elegans. J Biochem. 2002 Jun;131(6):807–813. doi: 10.1093/oxfordjournals.jbchem.a003169. [DOI] [PubMed] [Google Scholar]
  27. Ogawa R., Misago M., Fukuda M. N., Kudo S., Tsukada J., Morimoto I., Eto S. Structure and transcriptional regulation of human alpha-mannosidase IIX (alpha-mannosidase II isotype) gene. Eur J Biochem. 1996 Dec 15;242(3):446–453. doi: 10.1111/j.1432-1033.1996.446rr.x. [DOI] [PubMed] [Google Scholar]
  28. Oh-Eda M., Nakagawa H., Akama T. O., Lowitz K., Misago M., Moremen K. W., Fukuda M. N. Overexpression of the Golgi-localized enzyme alpha-mannosidase IIx in Chinese hamster ovary cells results in the conversion of hexamannosyl-N-acetylchitobiose to tetramannosyl-N-acetylchitobiose in the N-glycan-processing pathway. Eur J Biochem. 2001 Mar;268(5):1280–1288. doi: 10.1046/j.1432-1327.2001.01992.x. [DOI] [PubMed] [Google Scholar]
  29. Reck F., Springer M., Paulsen H., Brockhausen I., Sarkar M., Schachter H. Synthesis of tetrasaccharide analogues of the N-glycan substrate of beta-(1-->2)-N-acetylglucosaminyltransferase II using trisaccharide precursors and recombinant beta-(1-->2)-N-acetylglucosaminyltransferase I. Carbohydr Res. 1994 Jun 2;259(1):93–101. doi: 10.1016/0008-6215(94)84200-0. [DOI] [PubMed] [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sarkar M. Expression of recombinant rabbit UDP-GlcNAc: alpha 3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I catalytic domain in Sf9 insect cells. Glycoconj J. 1994 Jun;11(3):204–209. doi: 10.1007/BF00731219. [DOI] [PubMed] [Google Scholar]
  32. Sarkar M., Schachter H. Cloning and expression of Drosophila melanogaster UDP-GlcNAc:alpha-3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I. Biol Chem. 2001 Feb;382(2):209–217. doi: 10.1515/BC.2001.028. [DOI] [PubMed] [Google Scholar]
  33. Schachter H. The 'yellow brick road' to branched complex N-glycans. Glycobiology. 1991 Nov;1(5):453–461. doi: 10.1093/glycob/1.5.453. [DOI] [PubMed] [Google Scholar]
  34. Schachter Harry, Chen Shihao, Zhang Wenli, Spence Andrew M., Zhu Shaoxian, Callahan John W., Mahuran Don J., Fan Xiaolian, Bagshaw Rick D., She Yi-Min. Functional post-translational proteomics approach to study the role of N-glycans in the development of Caenorhabditis elegans. Biochem Soc Symp. 2002;(69):1–21. doi: 10.1042/bss0690001. [DOI] [PubMed] [Google Scholar]
  35. Staudacher E., Dalik T., Wawra P., Altmann F., März L. Functional purification and characterization of a GDP-fucose: beta-N-acetylglucosamine (Fuc to Asn linked GlcNAc) alpha 1,3-fucosyltransferase from mung beans. Glycoconj J. 1995 Dec;12(6):780–786. doi: 10.1007/BF00731239. [DOI] [PubMed] [Google Scholar]
  36. Staudacher E., Kubelka V., März L. Distinct N-glycan fucosylation potentials of three lepidopteran cell lines. Eur J Biochem. 1992 Aug 1;207(3):987–993. doi: 10.1111/j.1432-1033.1992.tb17134.x. [DOI] [PubMed] [Google Scholar]
  37. Strasser R., Mucha J., Schwihla H., Altmann F., Glössl J., Steinkellner H. Molecular cloning and characterization of cDNA coding for beta1, 2N-acetylglucosaminyltransferase I (GlcNAc-TI) from Nicotiana tabacum. Glycobiology. 1999 Aug;9(8):779–785. doi: 10.1093/glycob/9.8.779. [DOI] [PubMed] [Google Scholar]
  38. Tan J., Dunn J., Jaeken J., Schachter H. Mutations in the MGAT2 gene controlling complex N-glycan synthesis cause carbohydrate-deficient glycoprotein syndrome type II, an autosomal recessive disease with defective brain development. Am J Hum Genet. 1996 Oct;59(4):810–817. [PMC free article] [PubMed] [Google Scholar]
  39. Vella G. J., Paulsen H., Schachter H. Control of glycoprotein synthesis. IX. A terminal Man alpha l-3Man beta 1- sequence in the substrate is the minimum requirement for UDP-N-acetyl-D-glucosamine: alpha-D-mannoside (GlcNAc to Man alpha 1-3) beta 2-N-acetylglucosaminyltransferase I. Can J Biochem Cell Biol. 1984 Jun;62(6):409–417. doi: 10.1139/o84-056. [DOI] [PubMed] [Google Scholar]
  40. Vitale A., Chrispeels M. J. Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies. J Cell Biol. 1984 Jul;99(1 Pt 1):133–140. doi: 10.1083/jcb.99.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wagner R., Geyer H., Geyer R., Klenk H. D. N-acetyl-beta-glucosaminidase accounts for differences in glycosylation of influenza virus hemagglutinin expressed in insect cells from a baculovirus vector. J Virol. 1996 Jun;70(6):4103–4109. doi: 10.1128/jvi.70.6.4103-4109.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Watanabe Satoko, Kokuho Takehiro, Takahashi Hitomi, Takahashi Masashi, Kubota Takayuki, Inumaru Shigeki. Sialylation of N-glycans on the recombinant proteins expressed by a baculovirus-insect cell system under beta-N-acetylglucosaminidase inhibition. J Biol Chem. 2001 Dec 6;277(7):5090–5093. doi: 10.1074/jbc.M110548200. [DOI] [PubMed] [Google Scholar]
  43. Wilson I. B., Zeleny R., Kolarich D., Staudacher E., Stroop C. J., Kamerling J. P., Altmann F. Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, core alpha1,3-linked fucose and xylose substitutions. Glycobiology. 2001 Apr;11(4):261–274. doi: 10.1093/glycob/11.4.261. [DOI] [PubMed] [Google Scholar]
  44. Wilson J. R., Williams D., Schachter H. The control of glycoprotein synthesis: N-acetylglucosamine linkage to a mannose residue as a signal for the attachment of L-fucose to the asparagine-linked N-acetylglucosamine residue of glycopeptide from alpha1-acid glycoprotein. Biochem Biophys Res Commun. 1976 Oct 4;72(3):909–916. doi: 10.1016/s0006-291x(76)80218-5. [DOI] [PubMed] [Google Scholar]
  45. van den Elsen J. M., Kuntz D. A., Rose D. R. Structure of Golgi alpha-mannosidase II: a target for inhibition of growth and metastasis of cancer cells. EMBO J. 2001 Jun 15;20(12):3008–3017. doi: 10.1093/emboj/20.12.3008. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES