Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 15;372(Pt 1):203–210. doi: 10.1042/BJ20021696

Increased expression of the lipocalin 24p3 as an apoptotic mechanism for MK886.

Zhimin Tong 1, Xuli Wu 1, James P Kehrer 1
PMCID: PMC1223388  PMID: 12614196

Abstract

MK886, a strong proapoptotic agent, is an inhibitor of 5-lipoxygenase (LOX) through binding to the 5-LOX-activating protein (FLAP). Although MK886-induced apoptosis is through a FLAP-independent pathway, the precise mechanisms are not understood. In the present study, a possible role of 24p3, a lipocalin, in MK886-induced apoptosis was investigated. Exposure of murine prolymphoid progenitor cells (FL5.12) to 20 microM MK886 for 16 h dramatically increased 24p3 mRNA and protein expression. Induction could also be achieved with another FLAP inhibitor, MK591. The induction of 24p3 by MK886 was dose- and time-dependent. The up-regulated 24p3 mRNA expression by MK886 was enhanced a further 3.1-fold by WY14643, an activator of peroxisome-proliferator-activated receptor alpha, whereas ciglitazone, an activator of peroxisome-proliferator-activated receptor gamma attenuated the MK886-induced 24p3 expression by more than 50%. Neither WY14643 nor ciglitazone alone had any effect on the expression of 24p3. The induction of 24p3 by MK886 was dependent on the synthesis of new protein(s), since cycloheximide, an inhibitor of protein synthesis, prevented this effect. In all cases, including the inhibition of MK886-induced 24p3 protein expression by stable transfection with antisense cDNA of 24p3, the extent of apoptosis closely paralleled 24p3 levels. Apoptosis induced by MK886, or enhanced by WY14643, was accompanied by the cleavage and activation of caspase-3. The overexpression of bcl-2 or bcl-x(L) in FL5.12 cells inhibited apoptosis induced by MK886 as well as the enhancement of apoptosis by WY14643. Thus 24p3 is an MK886-inducible gene and may play an important role in MK886-induced apoptosis.

Full Text

The Full Text of this article is available as a PDF (282.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonsson B. Bax and other pro-apoptotic Bcl-2 family "killer-proteins" and their victim the mitochondrion. Cell Tissue Res. 2001 Oct 30;306(3):347–361. doi: 10.1007/s00441-001-0472-0. [DOI] [PubMed] [Google Scholar]
  2. Avis I. M., Jett M., Boyle T., Vos M. D., Moody T., Treston A. M., Martínez A., Mulshine J. L. Growth control of lung cancer by interruption of 5-lipoxygenase-mediated growth factor signaling. J Clin Invest. 1996 Feb 1;97(3):806–813. doi: 10.1172/JCI118480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Avis I., Hong S. H., Martinez A., Moody T., Choi Y. H., Trepel J., Das R., Jett M., Mulshine J. L. Five-lipoxygenase inhibitors can mediate apoptosis in human breast cancer cell lines through complex eicosanoid interactions. FASEB J. 2001 Jul 9;15(11):2007–2009. doi: 10.1096/fj.00-0866fje. [DOI] [PubMed] [Google Scholar]
  4. Bellamy C. O., Malcomson R. D., Harrison D. J., Wyllie A. H. Cell death in health and disease: the biology and regulation of apoptosis. Semin Cancer Biol. 1995 Feb;6(1):3–16. doi: 10.1006/scbi.1995.0002. [DOI] [PubMed] [Google Scholar]
  5. Brash A. R. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem. 1999 Aug 20;274(34):23679–23682. doi: 10.1074/jbc.274.34.23679. [DOI] [PubMed] [Google Scholar]
  6. Bratt T. Lipocalins and cancer. Biochim Biophys Acta. 2000 Oct 18;1482(1-2):318–326. doi: 10.1016/s0167-4838(00)00154-0. [DOI] [PubMed] [Google Scholar]
  7. Chu S. T., Lin H. J., Huang H. L., Chen Y. H. The hydrophobic pocket of 24p3 protein from mouse uterine luminal fluid: fatty acid and retinol binding activity and predicted structural similarity to lipocalins. J Pept Res. 1998 Nov;52(5):390–397. doi: 10.1111/j.1399-3011.1998.tb00663.x. [DOI] [PubMed] [Google Scholar]
  8. Clark-Lewis I., Thomas W. R., Schrader J. W. Characterization of hemopoietic growth factors from T cells and the myelomonocytic leukemia WEHI-3B. Exp Hematol. 1985 May;13(4):304–311. [PubMed] [Google Scholar]
  9. Datta K., Biswal S. S., Kehrer J. P. The 5-lipoxygenase-activating protein (FLAP) inhibitor, MK886, induces apoptosis independently of FLAP. Biochem J. 1999 Jun 1;340(Pt 2):371–375. [PMC free article] [PubMed] [Google Scholar]
  10. Datta K., Biswal S. S., Xu J., Towndrow K. M., Feng X., Kehrer J. P. A relationship between 5-lipoxygenase-activating protein and bcl-xL expression in murine pro-B lymphocytic FL5.12 cells. J Biol Chem. 1998 Oct 23;273(43):28163–28169. doi: 10.1074/jbc.273.43.28163. [DOI] [PubMed] [Google Scholar]
  11. Davis T. R., Tabatabai L., Bruns K., Hamilton R. T., Nilsen-Hamilton M. Basic fibroblast growth factor induces 3T3 fibroblasts to synthesize and secrete a cyclophilin-like protein and beta 2-microglobulin. Biochim Biophys Acta. 1991 Oct 26;1095(2):145–152. doi: 10.1016/0167-4889(91)90077-b. [DOI] [PubMed] [Google Scholar]
  12. Devireddy L. R., Teodoro J. G., Richard F. A., Green M. R. Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science. 2001 Aug 3;293(5531):829–834. doi: 10.1126/science.1061075. [DOI] [PubMed] [Google Scholar]
  13. Ferreira Carlos G., Epping Mirjam, Kruyt Frank A. E., Giaccone Giuseppe. Apoptosis: target of cancer therapy. Clin Cancer Res. 2002 Jul;8(7):2024–2034. [PubMed] [Google Scholar]
  14. Garay-Rojas E., Harper M., Hraba-Renevey S., Kress M. An apparent autocrine mechanism amplifies the dexamethasone- and retinoic acid-induced expression of mouse lipocalin-encoding gene 24p3. Gene. 1996 May 8;170(2):173–180. doi: 10.1016/0378-1119(95)00896-9. [DOI] [PubMed] [Google Scholar]
  15. Ghosh J., Myers C. E. Arachidonic acid stimulates prostate cancer cell growth: critical role of 5-lipoxygenase. Biochem Biophys Res Commun. 1997 Jun 18;235(2):418–423. doi: 10.1006/bbrc.1997.6799. [DOI] [PubMed] [Google Scholar]
  16. Ghosh J., Myers C. E. Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13182–13187. doi: 10.1073/pnas.95.22.13182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gugliucci Arianna, Ranzato Laura, Scorrano Luca, Colonna Raffaele, Petronilli Valeria, Cusan Claudia, Prato Maurizio, Mancini Mariangela, Pagano Francesco, Bernardi Paolo. Mitochondria are direct targets of the lipoxygenase inhibitor MK886. A strategy for cell killing by combined treatment with MK886 and cyclooxygenase inhibitors. J Biol Chem. 2002 Jun 21;277(35):31789–31795. doi: 10.1074/jbc.M204450200. [DOI] [PubMed] [Google Scholar]
  18. Haraguchi Kazutaka, Shimura Hiroki, Onaya Toshimasa. Activation of peroxisome proliferator-activated receptor-gamma inhibits apoptosis induced by serum deprivation in LLC-PK1 cells. Exp Nephrol. 2002;10(5-6):393–401. doi: 10.1159/000065303. [DOI] [PubMed] [Google Scholar]
  19. Harris R. R., Carter G. W., Bell R. L., Moore J. L., Brooks D. W. Clinical activity of leukotriene inhibitors. Int J Immunopharmacol. 1995 Feb;17(2):147–156. doi: 10.1016/0192-0561(94)00093-4. [DOI] [PubMed] [Google Scholar]
  20. Hihi A. K., Michalik L., Wahli W. PPARs: transcriptional effectors of fatty acids and their derivatives. Cell Mol Life Sci. 2002 May;59(5):790–798. doi: 10.1007/s00018-002-8467-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hraba-Renevey S., Türler H., Kress M., Salomon C., Weil R. SV40-induced expression of mouse gene 24p3 involves a post-transcriptional mechanism. Oncogene. 1989 May;4(5):601–608. [PubMed] [Google Scholar]
  22. Jacobson M. D., Weil M., Raff M. C. Programmed cell death in animal development. Cell. 1997 Feb 7;88(3):347–354. doi: 10.1016/s0092-8674(00)81873-5. [DOI] [PubMed] [Google Scholar]
  23. Jones Dallas C., Ding Xiaohong, Daynes Raymond A. Nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) is expressed in resting murine lymphocytes. The PPARalpha in T and B lymphocytes is both transactivation and transrepression competent. J Biol Chem. 2001 Nov 28;277(9):6838–6845. doi: 10.1074/jbc.M106908200. [DOI] [PubMed] [Google Scholar]
  24. Kehrer J. P., Biswal S. S., La E., Thuillier P., Datta K., Fischer S. M., Vanden Heuvel J. P. Inhibition of peroxisome-proliferator-activated receptor (PPAR)alpha by MK886. Biochem J. 2001 Jun 15;356(Pt 3):899–906. doi: 10.1042/0264-6021:3560899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kuhn H., Thiele B. J. The diversity of the lipoxygenase family. Many sequence data but little information on biological significance. FEBS Lett. 1999 Apr 16;449(1):7–11. doi: 10.1016/s0014-5793(99)00396-8. [DOI] [PubMed] [Google Scholar]
  26. La Eunhye, Kern Julie C., Atarod Elisa B., Kehrer James P. Fatty acid release and oxidation are factors in lipoxygenase inhibitor-induced apoptosis. Toxicol Lett. 2003 Mar 3;138(3):193–203. doi: 10.1016/s0378-4274(02)00407-1. [DOI] [PubMed] [Google Scholar]
  27. Lee Y. C., Lin S. D., Yu H. M., Chen S. T., Chu S. T. Phosphorylation of the 24p3 protein secreted from mouse uterus in vitro and in vivo. J Protein Chem. 2001 Oct;20(7):563–569. doi: 10.1023/a:1013321213822. [DOI] [PubMed] [Google Scholar]
  28. Liu Q., Nilsen-Hamilton M. Identification of a new acute phase protein. J Biol Chem. 1995 Sep 22;270(38):22565–22570. doi: 10.1074/jbc.270.38.22565. [DOI] [PubMed] [Google Scholar]
  29. Mak Tak W., Yeh Wen-Chen. Signaling for survival and apoptosis in the immune system. Arthritis Res. 2002 May 9;4 (Suppl 3):S243–S252. doi: 10.1186/ar569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Meheus L. A., Fransen L. M., Raymackers J. G., Blockx H. A., Van Beeumen J. J., Van Bun S. M., Van de Voorde A. Identification by microsequencing of lipopolysaccharide-induced proteins secreted by mouse macrophages. J Immunol. 1993 Aug 1;151(3):1535–1547. [PubMed] [Google Scholar]
  31. Mohr S., Zech B., Lapetina E. G., Brüne B. Inhibition of caspase-3 by S-nitrosation and oxidation caused by nitric oxide. Biochem Biophys Res Commun. 1997 Sep 18;238(2):387–391. doi: 10.1006/bbrc.1997.7304. [DOI] [PubMed] [Google Scholar]
  32. Roberts R. A., James N. H., Hasmall S. C., Holden P. R., Lambe K., Macdonald N., West D., Woodyatt N. J., Whitcome D. Apoptosis and proliferation in nongenotoxic carcinogenesis: species differences and role of PPARalpha. Toxicol Lett. 2000 Mar 15;112-113:49–57. doi: 10.1016/s0378-4274(99)00243-x. [DOI] [PubMed] [Google Scholar]
  33. Rouzer C. A., Ford-Hutchinson A. W., Morton H. E., Gillard J. W. MK886, a potent and specific leukotriene biosynthesis inhibitor blocks and reverses the membrane association of 5-lipoxygenase in ionophore-challenged leukocytes. J Biol Chem. 1990 Jan 25;265(3):1436–1442. [PubMed] [Google Scholar]
  34. Ryon Joel, Bendickson Lee, Nilsen-Hamilton Marit. High expression in involuting reproductive tissues of uterocalin/24p3, a lipocalin and acute phase protein. Biochem J. 2002 Oct 1;367(Pt 1):271–277. doi: 10.1042/BJ20020026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Simonian P. L., Grillot D. A., Nuñez G. Bcl-2 and Bcl-XL can differentially block chemotherapy-induced cell death. Blood. 1997 Aug 1;90(3):1208–1216. [PubMed] [Google Scholar]
  36. Simonin Marie-Agnès, Bordji Karim, Boyault Sandrine, Bianchi Arnaud, Gouze Elvire, Bécuwe Philippe, Dauça Michel, Netter Patrick, Terlain Bernard. PPAR-gamma ligands modulate effects of LPS in stimulated rat synovial fibroblasts. Am J Physiol Cell Physiol. 2002 Jan;282(1):C125–C133. doi: 10.1152/ajpcell.2002.282.1.C125. [DOI] [PubMed] [Google Scholar]
  37. Tang D. G., Chen Y. Q., Honn K. V. Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5241–5246. doi: 10.1073/pnas.93.11.5241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tang Dean G., La Eunhye, Kern Julie, Kehrer James P. Fatty acid oxidation and signaling in apoptosis. Biol Chem. 2002 Mar-Apr;383(3-4):425–442. doi: 10.1515/BC.2002.046. [DOI] [PubMed] [Google Scholar]
  39. Thompson C. B. Apoptosis in the pathogenesis and treatment of disease. Science. 1995 Mar 10;267(5203):1456–1462. doi: 10.1126/science.7878464. [DOI] [PubMed] [Google Scholar]
  40. Thuillier Philippe, Brash Alan R., Kehrer James P., Stimmel Julie B., Leesnitzer Lisa M., Yang Peiying, Newman Robert A., Fischer Susan M. Inhibition of peroxisome proliferator-activated receptor (PPAR)-mediated keratinocyte differentiation by lipoxygenase inhibitors. Biochem J. 2002 Sep 15;366(Pt 3):901–910. doi: 10.1042/BJ20020377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vanden Heuvel J. P. Peroxisome proliferator-activated receptors: a critical link among fatty acids, gene expression and carcinogenesis. J Nutr. 1999 Feb;129(2S):575S–580S. doi: 10.1093/jn/129.2.575S. [DOI] [PubMed] [Google Scholar]
  42. Wang Y. Lynn, Frauwirth Kenneth A., Rangwala Shamina M., Lazar Mitchell A., Thompson Craig B. Thiazolidinedione activation of peroxisome proliferator-activated receptor gamma can enhance mitochondrial potential and promote cell survival. J Biol Chem. 2002 Jun 24;277(35):31781–31788. doi: 10.1074/jbc.M204279200. [DOI] [PubMed] [Google Scholar]
  43. Yang Jun, Goetz David, Li Jau Yi, Wang Wenge, Mori Kiyoshi, Setlik Daria, Du Tonggong, Erdjument-Bromage Hediye, Tempst Paul, Strong Roland. An iron delivery pathway mediated by a lipocalin. Mol Cell. 2002 Nov;10(5):1045–1056. doi: 10.1016/s1097-2765(02)00710-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES