Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 1;372(Pt 2):291–304. doi: 10.1042/BJ20021532

Synergism between nuclear receptors bound to specific hormone response elements of the hepatic control region-1 and the proximal apolipoprotein C-II promoter mediate apolipoprotein C-II gene regulation by bile acids and retinoids.

Dimitris Kardassis 1, Anastasia Roussou 1, Paraskevi Papakosta 1, Konstantinos Boulias 1, Iannis Talianidis 1, Vassilis I Zannis 1
PMCID: PMC1223391  PMID: 12585964

Abstract

We have shown previously that the hepatic control region 1 (HCR-1) enhances the activity of the human apolipoprotein C-II (apoC-II) promoter in HepG2 cells via two hormone response elements (HREs) present in the apoC-II promoter. In the present paper, we report that the HCR-1 selectively mediates the transactivation of the apoC-II promoter by chenodeoxycholic acid (CDCA) and 9- cis -retinoic acid. CDCA, which is a natural ligand of farnesoid X receptor alpha (FXRalpha), increases the steady-state apoC-II mRNA levels in HepG2 cells. This increase in transcription requires the binding of retinoid X receptor alpha (RXRalpha)-FXRalpha heterodimers to a novel inverted repeat with one nucleotide spacing (IR-1) present in the HCR-1. This element also binds hepatocyte nuclear factor 4 and apoA-I regulatory protein-1. Transactivation of the HCR-1/apoC-II promoter cluster by RXRalpha-FXRalpha heterodimers in the presence of CDCA was abolished by mutations either in the IR-1 HRE of the HCR-1 or in the thyroid HRE of the proximal apoC-II promoter, which binds RXRalpha-thyroid hormone receptor beta (T3Rbeta) heterodimers. The same mutations also abolished transactivation of the HCR-1/apoC-II promoter cluster by RXRalpha-T3Rbeta heterodimers in the presence of tri-iodothyronine. The findings establish synergism between nuclear receptors bound to specific HREs of the proximal apoC-II promoter and the HCR-1, and suggest that this synergism mediates the induction of the HCR-1/apoC-II promoter cluster by bile acids and retinoids.

Full Text

The Full Text of this article is available as a PDF (513.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan C. M., Taylor S., Taylor J. M. Two hepatic enhancers, HCR.1 and HCR.2, coordinate the liver expression of the entire human apolipoprotein E/C-I/C-IV/C-II gene cluster. J Biol Chem. 1997 Nov 14;272(46):29113–29119. doi: 10.1074/jbc.272.46.29113. [DOI] [PubMed] [Google Scholar]
  2. Allan C. M., Walker D., Segrest J. P., Taylor J. M. Identification and characterization of a new human gene (APOC4) in the apolipoprotein E, C-I, and C-II gene locus. Genomics. 1995 Jul 20;28(2):291–300. doi: 10.1006/geno.1995.1144. [DOI] [PubMed] [Google Scholar]
  3. Allan C. M., Walker D., Taylor J. M. Evolutionary duplication of a hepatic control region in the human apolipoprotein E gene locus. Identification of a second region that confers high level and liver-specific expression of the human apolipoprotein E gene in transgenic mice. J Biol Chem. 1995 Nov 3;270(44):26278–26281. doi: 10.1074/jbc.270.44.26278. [DOI] [PubMed] [Google Scholar]
  4. Breckenridge W. C., Little J. A., Steiner G., Chow A., Poapst M. Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N Engl J Med. 1978 Jun 8;298(23):1265–1273. doi: 10.1056/NEJM197806082982301. [DOI] [PubMed] [Google Scholar]
  5. Connelly P. W., Maguire G. F., Hofmann T., Little J. A. Structure of apolipoprotein C-IIToronto, a nonfunctional human apolipoprotein. Proc Natl Acad Sci U S A. 1987 Jan;84(1):270–273. doi: 10.1073/pnas.84.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dang Q., Taylor J. In vivo footprinting analysis of the hepatic control region of the human apolipoprotein E/C-I/C-IV/C-II gene locus. J Biol Chem. 1996 Nov 8;271(45):28667–28676. doi: 10.1074/jbc.271.45.28667. [DOI] [PubMed] [Google Scholar]
  7. Edlund T., Walker M. D., Barr P. J., Rutter W. J. Cell-specific expression of the rat insulin gene: evidence for role of two distinct 5' flanking elements. Science. 1985 Nov 22;230(4728):912–916. doi: 10.1126/science.3904002. [DOI] [PubMed] [Google Scholar]
  8. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  10. Grober J., Zaghini I., Fujii H., Jones S. A., Kliewer S. A., Willson T. M., Ono T., Besnard P. Identification of a bile acid-responsive element in the human ileal bile acid-binding protein gene. Involvement of the farnesoid X receptor/9-cis-retinoic acid receptor heterodimer. J Biol Chem. 1999 Oct 15;274(42):29749–29754. doi: 10.1074/jbc.274.42.29749. [DOI] [PubMed] [Google Scholar]
  11. Hatzis P., Talianidis I. Regulatory mechanisms controlling human hepatocyte nuclear factor 4alpha gene expression. Mol Cell Biol. 2001 Nov;21(21):7320–7330. doi: 10.1128/MCB.21.21.7320-7330.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hayhurst G. P., Lee Y. H., Lambert G., Ward J. M., Gonzalez F. J. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol. 2001 Feb;21(4):1393–1403. doi: 10.1128/MCB.21.4.1393-1403.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jackson R. L., Baker H. N., Gilliam E. B., Gotto A. M., Jr Primary structure of very low density apolipoprotein C-II of human plasma. Proc Natl Acad Sci U S A. 1977 May;74(5):1942–1945. doi: 10.1073/pnas.74.5.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jelinek D. F., Andersson S., Slaughter C. A., Russell D. W. Cloning and regulation of cholesterol 7 alpha-hydroxylase, the rate-limiting enzyme in bile acid biosynthesis. J Biol Chem. 1990 May 15;265(14):8190–8197. [PMC free article] [PubMed] [Google Scholar]
  15. Jong M. C., Havekes L. M. Insights into apolipoprotein C metabolism from transgenic and gene-targeted mice. Int J Tissue React. 2000;22(2-3):59–66. [PubMed] [Google Scholar]
  16. Kan H. Y., Georgopoulos S., Zannis V. A hormone response element in the human apolipoprotein CIII (ApoCIII) enhancer is essential for intestinal expression of the ApoA-I and ApoCIII genes and contributes to the hepatic expression of the two linked genes in transgenic mice. J Biol Chem. 2000 Sep 29;275(39):30423–30431. doi: 10.1074/jbc.M005641200. [DOI] [PubMed] [Google Scholar]
  17. Kardassis D., Sacharidou E., Zannis V. I. Transactivation of the human apolipoprotein CII promoter by orphan and ligand-dependent nuclear receptors. The regulatory element CIIC is a thyroid hormone response element. J Biol Chem. 1998 Jul 10;273(28):17810–17816. doi: 10.1074/jbc.273.28.17810. [DOI] [PubMed] [Google Scholar]
  18. Kardassis D., Zannis V. I., Cladaras C. Organization of the regulatory elements and nuclear activities participating in the transcription of the human apolipoprotein B gene. J Biol Chem. 1992 Feb 5;267(4):2622–2632. [PubMed] [Google Scholar]
  19. Kast H. R., Nguyen C. M., Sinal C. J., Jones S. A., Laffitte B. A., Reue K., Gonzalez F. J., Willson T. M., Edwards P. A. Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids. Mol Endocrinol. 2001 Oct;15(10):1720–1728. doi: 10.1210/mend.15.10.0712. [DOI] [PubMed] [Google Scholar]
  20. Ladias J. A., Hadzopoulou-Cladaras M., Kardassis D., Cardot P., Cheng J., Zannis V., Cladaras C. Transcriptional regulation of human apolipoprotein genes ApoB, ApoCIII, and ApoAII by members of the steroid hormone receptor superfamily HNF-4, ARP-1, EAR-2, and EAR-3. J Biol Chem. 1992 Aug 5;267(22):15849–15860. [PubMed] [Google Scholar]
  21. Laffitte B. A., Kast H. R., Nguyen C. M., Zavacki A. M., Moore D. D., Edwards P. A. Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. J Biol Chem. 2000 Apr 7;275(14):10638–10647. doi: 10.1074/jbc.275.14.10638. [DOI] [PubMed] [Google Scholar]
  22. Lavrentiadou S. N., Hadzopoulou-Cladaras M., Kardassis D., Zannis V. I. Binding specificity and modulation of the human ApoCIII promoter activity by heterodimers of ligand-dependent nuclear receptors. Biochemistry. 1999 Jan 19;38(3):964–975. doi: 10.1021/bi981068i. [DOI] [PubMed] [Google Scholar]
  23. Lenich C., Brecher P., Makrides S., Chobanian A., Zannis V. I. Apolipoprotein gene expression in the rabbit: abundance, size, and distribution of apolipoprotein mRNA species in different tissues. J Lipid Res. 1988 Jun;29(6):755–764. [PubMed] [Google Scholar]
  24. Li J., Ning G., Duncan S. A. Mammalian hepatocyte differentiation requires the transcription factor HNF-4alpha. Genes Dev. 2000 Feb 15;14(4):464–474. [PMC free article] [PubMed] [Google Scholar]
  25. Lusis A. J., Heinzmann C., Sparkes R. S., Scott J., Knott T. J., Geller R., Sparkes M. C., Mohandas T. Regional mapping of human chromosome 19: organization of genes for plasma lipid transport (APOC1, -C2, and -E and LDLR) and the genes C3, PEPD, and GPI. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3929–3933. doi: 10.1073/pnas.83.11.3929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Makishima M., Okamoto A. Y., Repa J. J., Tu H., Learned R. M., Luk A., Hull M. V., Lustig K. D., Mangelsdorf D. J., Shan B. Identification of a nuclear receptor for bile acids. Science. 1999 May 21;284(5418):1362–1365. doi: 10.1126/science.284.5418.1362. [DOI] [PubMed] [Google Scholar]
  27. Mangelsdorf D. J., Evans R. M. The RXR heterodimers and orphan receptors. Cell. 1995 Dec 15;83(6):841–850. doi: 10.1016/0092-8674(95)90200-7. [DOI] [PubMed] [Google Scholar]
  28. Miller A. L., Smith L. C. Activation of lipoprotein lipase by apolipoprotein glutamic acid. Formation of a stable surface film. J Biol Chem. 1973 May 10;248(9):3359–3362. [PubMed] [Google Scholar]
  29. Nilsson-Ehle P., Garfinkel A. S., Schotz M. C. Lipolytic enzymes and plasma lipoprotein metabolism. Annu Rev Biochem. 1980;49:667–693. doi: 10.1146/annurev.bi.49.070180.003315. [DOI] [PubMed] [Google Scholar]
  30. Pardali K., Kurisaki A., Morén A., ten Dijke P., Kardassis D., Moustakas A. Role of Smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation by transforming growth factor-beta. J Biol Chem. 2000 Sep 22;275(38):29244–29256. doi: 10.1074/jbc.M909467199. [DOI] [PubMed] [Google Scholar]
  31. Parks D. J., Blanchard S. G., Bledsoe R. K., Chandra G., Consler T. G., Kliewer S. A., Stimmel J. B., Willson T. M., Zavacki A. M., Moore D. D. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999 May 21;284(5418):1365–1368. doi: 10.1126/science.284.5418.1365. [DOI] [PubMed] [Google Scholar]
  32. Russell D. W., Setchell K. D. Bile acid biosynthesis. Biochemistry. 1992 May 26;31(20):4737–4749. doi: 10.1021/bi00135a001. [DOI] [PubMed] [Google Scholar]
  33. Simonet W. S., Bucay N., Lauer S. J., Taylor J. M. A far-downstream hepatocyte-specific control region directs expression of the linked human apolipoprotein E and C-I genes in transgenic mice. J Biol Chem. 1993 Apr 15;268(11):8221–8229. [PubMed] [Google Scholar]
  34. Simonet W. S., Bucay N., Pitas R. E., Lauer S. J., Taylor J. M. Multiple tissue-specific elements control the apolipoprotein E/C-I gene locus in transgenic mice. J Biol Chem. 1991 May 15;266(14):8651–8654. [PubMed] [Google Scholar]
  35. Sinal C. J., Tohkin M., Miyata M., Ward J. M., Lambert G., Gonzalez F. J. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000 Sep 15;102(6):731–744. doi: 10.1016/s0092-8674(00)00062-3. [DOI] [PubMed] [Google Scholar]
  36. Sladek F. M. Orphan receptor HNF-4 and liver-specific gene expression. Receptor. 1993 Fall;3(3):223–232. [PubMed] [Google Scholar]
  37. Streicher R., Geisel J., Weisshaar C., Avci H., Oette K., Müller-Wieland D., Krone W. A single nucleotide substitution in the promoter region of the apolipoprotein C-II gene identified in individuals with chylomicronemia. J Lipid Res. 1996 Dec;37(12):2599–2607. [PubMed] [Google Scholar]
  38. Tu H., Okamoto A. Y., Shan B. FXR, a bile acid receptor and biological sensor. Trends Cardiovasc Med. 2000 Jan;10(1):30–35. doi: 10.1016/s1050-1738(00)00043-8. [DOI] [PubMed] [Google Scholar]
  39. Vorgia P., Zannis V. I., Kardassis D. A short proximal promoter and the distal hepatic control region-1 (HCR-1) contribute to the liver specificity of the human apolipoprotein C-II gene. Hepatic enhancement by HCR-1 requires two proximal hormone response elements which have different binding specificities for orphan receptors HNF-4, ARP-1, and EAR-2. J Biol Chem. 1998 Feb 13;273(7):4188–4196. doi: 10.1074/jbc.273.7.4188. [DOI] [PubMed] [Google Scholar]
  40. Wei C. F., Tsao Y. K., Robberson D. L., Gotto A. M., Jr, Brown K., Chan L. The structure of the human apolipoprotein C-II gene. Electron microscopic analysis of RNA:DNA hybrids, complete nucleotide sequence, and identification of 5' homologous sequences among apolipoprotein genes. J Biol Chem. 1985 Dec 5;260(28):15211–15221. [PubMed] [Google Scholar]
  41. Wu A. L., Windmueller H. G. Relative contributions by liver and intestine to individual plasma apolipoproteins in the rat. J Biol Chem. 1979 Aug 10;254(15):7316–7322. [PubMed] [Google Scholar]
  42. Zannis V. I., Cole F. S., Jackson C. L., Kurnit D. M., Karathanasis S. K. Distribution of apolipoprotein A-I, C-II, C-III, and E mRNA in fetal human tissues. Time-dependent induction of apolipoprotein E mRNA by cultures of human monocyte-macrophages. Biochemistry. 1985 Jul 30;24(16):4450–4455. doi: 10.1021/bi00337a028. [DOI] [PubMed] [Google Scholar]
  43. Zannis V. I., Kan H. Y., Kritis A., Zanni E. E., Kardassis D. Transcriptional regulatory mechanisms of the human apolipoprotein genes in vitro and in vivo. Curr Opin Lipidol. 2001 Apr;12(2):181–207. doi: 10.1097/00041433-200104000-00012. [DOI] [PubMed] [Google Scholar]
  44. Zannis V. I., Kardassis D., Zanni E. E. Genetic mutations affecting human lipoproteins, their receptors, and their enzymes. Adv Hum Genet. 1993;21:145–319. doi: 10.1007/978-1-4615-3010-7_3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES