Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 1;372(Pt 2):335–345. doi: 10.1042/BJ20030003

The recombinant C-terminus of the human MUC2 mucin forms dimers in Chinese-hamster ovary cells and heterodimers with full-length MUC2 in LS 174T cells.

Martin E Lidell 1, Malin E V Johansson 1, Matthias Mörgelin 1, Noomi Asker 1, James R Gum Jr 1, Young S Kim 1, Gunnar C Hansson 1
PMCID: PMC1223394  PMID: 12597771

Abstract

The entire cDNA corresponding to the C-terminal cysteine-rich domain of the human MUC2 apomucin, after the serine- and threonine-rich tandem repeat, was expressed in Chinese-hamster ovary-K1 cells and in the human colon carcinoma cell line, LS 174T. The C-terminus was expressed as a fusion protein with the green fluorescent protein and mycTag sequences and the murine immunoglobulin kappa-chain signal sequence to direct the protein to the secretory pathway. Pulse-chase studies showed a rapid conversion of the C-terminal monomer into a dimer in both Chinese-hamster ovary-K1 and LS 174T cells. Disulphide-bond-stabilized dimers secreted into the media of both cell lines had a higher apparent molecular mass compared with the intracellular forms. The MUC2 C-terminus was purified from the spent culture medium and visualized by molecular electron microscopy. The dimer nature of the molecule was visible clearly and revealed that each monomer was attached to the other by a large globular domain. Gold-labelled antibodies against the mycTag or green fluorescent protein revealed that these were localized to the ends opposite to the parts responsible for the dimerization. The C-terminus expressed in LS 174T cells formed heterodimers with the full-length wild-type MUC2, but not with the MUC5AC mucin, normally expressed in LS 174T cells. The homodimers of the MUC2 C-termini were secreted continuously from the LS 174T cells, but no wild-type MUC2 secretion has been observed from these cells. This suggests that the information for sorting the MUC2 mucin into the regulated secretory pathway in cells having this ability is present in parts other than the C-terminus of MUC2.

Full Text

The Full Text of this article is available as a PDF (275.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asker N., Axelsson M. A., Olofsson S. O., Hansson G. C. Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono- and dimers to the Golgi apparatus. J Biol Chem. 1998 Jul 24;273(30):18857–18863. doi: 10.1074/jbc.273.30.18857. [DOI] [PubMed] [Google Scholar]
  2. Asker N., Axelsson M. A., Olofsson S. O., Hansson G. C. Human MUC5AC mucin dimerizes in the rough endoplasmic reticulum, similarly to the MUC2 mucin. Biochem J. 1998 Oct 15;335(Pt 2):381–387. doi: 10.1042/bj3350381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Asker N., Baeckström D., Axelsson M. A., Carlstedt I., Hansson G. C. The human MUC2 mucin apoprotein appears to dimerize before O-glycosylation and shares epitopes with the 'insoluble' mucin of rat small intestine. Biochem J. 1995 Jun 15;308(Pt 3):873–880. doi: 10.1042/bj3080873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baschong W., Lucocq J. M., Roth J. "Thiocyanate gold": small (2-3 nm) colloidal gold for affinity cytochemical labeling in electron microscopy. Histochemistry. 1985;83(5):409–411. doi: 10.1007/BF00509201. [DOI] [PubMed] [Google Scholar]
  5. Bell S. L., Khatri I. A., Xu G., Forstner J. F. Evidence that a peptide corresponding to the rat Muc2 C-terminus undergoes disulphide-mediated dimerization. Eur J Biochem. 1998 Apr 1;253(1):123–131. doi: 10.1046/j.1432-1327.1998.2530123.x. [DOI] [PubMed] [Google Scholar]
  6. Bell S. L., Xu G., Forstner J. F. Role of the cystine-knot motif at the C-terminus of rat mucin protein Muc2 in dimer formation and secretion. Biochem J. 2001 Jul 1;357(Pt 1):203–209. doi: 10.1042/0264-6021:3570203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bhargava A. K., Woitach J. T., Davidson E. A., Bhavanandan V. P. Cloning and cDNA sequence of a bovine submaxillary gland mucin-like protein containing two distinct domains. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6798–6802. doi: 10.1073/pnas.87.17.6798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Daopin S., Piez K. A., Ogawa Y., Davies D. R. Crystal structure of transforming growth factor-beta 2: an unusual fold for the superfamily. Science. 1992 Jul 17;257(5068):369–373. doi: 10.1126/science.1631557. [DOI] [PubMed] [Google Scholar]
  9. Desseyn J. L., Aubert J. P., Van Seuningen I., Porchet N., Laine A. Genomic organization of the 3' region of the human mucin gene MUC5B. J Biol Chem. 1997 Jul 4;272(27):16873–16883. doi: 10.1074/jbc.272.27.16873. [DOI] [PubMed] [Google Scholar]
  10. Eckhardt A. E., Timpte C. S., Abernethy J. L., Zhao Y., Hill R. L. Porcine submaxillary mucin contains a cystine-rich, carboxyl-terminal domain in addition to a highly repetitive, glycosylated domain. J Biol Chem. 1991 May 25;266(15):9678–9686. [PubMed] [Google Scholar]
  11. Engel J., Furthmayr H. Electron microscopy and other physical methods for the characterization of extracellular matrix components: laminin, fibronectin, collagen IV, collagen VI, and proteoglycans. Methods Enzymol. 1987;145:3–78. doi: 10.1016/0076-6879(87)45003-9. [DOI] [PubMed] [Google Scholar]
  12. Godl Klaus, Johansson Malin E. V., Lidell Martin E., Mörgelin Matthias, Karlsson Hasse, Olson Fredrik J., Gum James R., Jr, Kim Young S., Hansson Gunnar C. The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment. J Biol Chem. 2002 Oct 8;277(49):47248–47256. doi: 10.1074/jbc.M208483200. [DOI] [PubMed] [Google Scholar]
  13. Gum J. R., Byrd J. C., Hicks J. W., Toribara N. W., Lamport D. T., Kim Y. S. Molecular cloning of human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism. J Biol Chem. 1989 Apr 15;264(11):6480–6487. [PubMed] [Google Scholar]
  14. Gum J. R., Jr, Hicks J. W., Toribara N. W., Rothe E. M., Lagace R. E., Kim Y. S. The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J Biol Chem. 1992 Oct 25;267(30):21375–21383. [PubMed] [Google Scholar]
  15. Gum J. R., Jr, Hicks J. W., Toribara N. W., Siddiki B., Kim Y. S. Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro-von Willebrand factor. J Biol Chem. 1994 Jan 28;269(4):2440–2446. [PubMed] [Google Scholar]
  16. Gum J. R., Jr Mucin genes and the proteins they encode: structure, diversity, and regulation. Am J Respir Cell Mol Biol. 1992 Dec;7(6):557–564. doi: 10.1165/ajrcmb/7.6.557. [DOI] [PubMed] [Google Scholar]
  17. Hansson G. C., Baeckström D., Carlstedt I., Klinga-Levan K. Molecular cloning of a cDNA coding for a region of an apoprotein from the 'insoluble' mucin complex of rat small intestine. Biochem Biophys Res Commun. 1994 Jan 14;198(1):181–190. doi: 10.1006/bbrc.1994.1026. [DOI] [PubMed] [Google Scholar]
  18. Jackson A. D. Airway goblet-cell mucus secretion. Trends Pharmacol Sci. 2001 Jan;22(1):39–45. doi: 10.1016/s0165-6147(00)01600-x. [DOI] [PubMed] [Google Scholar]
  19. Katsumi A., Tuley E. A., Bodó I., Sadler J. E. Localization of disulfide bonds in the cystine knot domain of human von Willebrand factor. J Biol Chem. 2000 Aug 18;275(33):25585–25594. doi: 10.1074/jbc.M002654200. [DOI] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lesuffleur T., Roche F., Hill A. S., Lacasa M., Fox M., Swallow D. M., Zweibaum A., Real F. X. Characterization of a mucin cDNA clone isolated from HT-29 mucus-secreting cells. The 3' end of MUC5AC? J Biol Chem. 1995 Jun 9;270(23):13665–13673. doi: 10.1074/jbc.270.23.13665. [DOI] [PubMed] [Google Scholar]
  22. McDonald N. Q., Hendrickson W. A. A structural superfamily of growth factors containing a cystine knot motif. Cell. 1993 May 7;73(3):421–424. doi: 10.1016/0092-8674(93)90127-c. [DOI] [PubMed] [Google Scholar]
  23. Meezaman D., Charles P., Daskal E., Polymeropoulos M. H., Martin B. M., Rose M. C. Cloning and analysis of cDNA encoding a major airway glycoprotein, human tracheobronchial mucin (MUC5). J Biol Chem. 1994 Apr 29;269(17):12932–12939. [PubMed] [Google Scholar]
  24. Molinete M., Lilla V., Jain R., Joyce P. B., Gorr S. U., Ravazzola M., Halban P. A. Trafficking of non-regulated secretory proteins in insulin secreting (INS-1) cells. Diabetologia. 2000 Sep;43(9):1157–1164. doi: 10.1007/s001250051507. [DOI] [PubMed] [Google Scholar]
  25. Perez-Vilar J., Eckhardt A. E., Hill R. L. Porcine submaxillary mucin forms disulfide-bonded dimers between its carboxyl-terminal domains. J Biol Chem. 1996 Apr 19;271(16):9845–9850. doi: 10.1074/jbc.271.16.9845. [DOI] [PubMed] [Google Scholar]
  26. Perez-Vilar J., Hill R. L. Norrie disease protein (norrin) forms disulfide-linked oligomers associated with the extracellular matrix. J Biol Chem. 1997 Dec 26;272(52):33410–33415. doi: 10.1074/jbc.272.52.33410. [DOI] [PubMed] [Google Scholar]
  27. Perez-Vilar J., Hill R. L. The carboxyl-terminal 90 residues of porcine submaxillary mucin are sufficient for forming disulfide-bonded dimers. J Biol Chem. 1998 Mar 20;273(12):6982–6988. doi: 10.1074/jbc.273.12.6982. [DOI] [PubMed] [Google Scholar]
  28. Perez-Vilar J., Hill R. L. The structure and assembly of secreted mucins. J Biol Chem. 1999 Nov 5;274(45):31751–31754. doi: 10.1074/jbc.274.45.31751. [DOI] [PubMed] [Google Scholar]
  29. Pigny P., Guyonnet-Duperat V., Hill A. S., Pratt W. S., Galiegue-Zouitina S., d'Hooge M. C., Laine A., Van-Seuningen I., Degand P., Gum J. R. Human mucin genes assigned to 11p15.5: identification and organization of a cluster of genes. Genomics. 1996 Dec 15;38(3):340–352. doi: 10.1006/geno.1996.0637. [DOI] [PubMed] [Google Scholar]
  30. Sadler J. E. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998;67:395–424. doi: 10.1146/annurev.biochem.67.1.395. [DOI] [PubMed] [Google Scholar]
  31. Velcich Anna, Yang WanCai, Heyer Joerg, Fragale Alessandra, Nicholas Courtney, Viani Stephanie, Kucherlapati Raju, Lipkin Martin, Yang Kan, Augenlicht Leonard. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science. 2002 Mar 1;295(5560):1726–1729. doi: 10.1126/science.1069094. [DOI] [PubMed] [Google Scholar]
  32. Wagner D. D., Saffaripour S., Bonfanti R., Sadler J. E., Cramer E. M., Chapman B., Mayadas T. N. Induction of specific storage organelles by von Willebrand factor propolypeptide. Cell. 1991 Jan 25;64(2):403–413. doi: 10.1016/0092-8674(91)90648-i. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES