Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 1;372(Pt 2):453–463. doi: 10.1042/BJ20021803

Direct binding of a fragment of the Wiskott-Aldrich syndrome protein to the C-terminal end of the anaphylatoxin C5a receptor.

Marianne Tardif 1, Laurence Brouchon 1, Marie-Josèphe Rabiet 1, François Boulay 1
PMCID: PMC1223397  PMID: 12600272

Abstract

Migration of myeloid cells towards a source of chemoattractant, such as the C5a anaphylatoxin, is triggered by the activation of a G-protein-coupled receptor. In the present study, we have used a yeast two-hybrid approach to find unknown partners of the C5a receptor (C5aR). Using the cytosolic C-terminal region of C5aR as bait to screen a human leucocyte cDNA library, we identified the Wiskott-Aldrich syndrome protein (WASP) as a potential partner of C5aR. WASP is known to have an essential function in regulating actin dynamics at the cell leading edge. The interaction was detected with both the fragment of WASP containing amino acids 1-321 (WASP.321) and WASP with its actin-nucleation-promoting domain [verprolin-like, central and acidic (VCA) domain] deleted. The interaction between C5aR and the WASP.321 was supported further by an in vitro binding assay between a radiolabelled WASP.321 fragment and a receptor C-terminus glutathione S-transferase (GST) fusion protein, as well as by GST pull-down, co-immunoprecipitation and immunofluorescence experiments. In the yeast two-hybrid assay, full-length WASP showed no ability to interact with the C-terminal domain of C5aR. This is most probably due to an auto-inhibited conformation imposed by the VCA domain. In HEK-293T cells co-transfected with full-length WASP and C5aR, only a small amount of WASP was co-precipitated with the receptor. However, in the presence of the active form of the GTPase Cdc42 (Cdc42V12), which is thought to switch WASP to an active 'open conformation', the amount of WASP associated with the receptor was markedly increased. We hypothesize that a transient interaction between C5aR and WASP occurs following the stimulation of C5aR and Cdc42 activation. This might be one mechanism by which WASP is targeted to the plasma membrane and by which actin assembly is spatially controlled in cells moving in a gradient of C5a.

Full Text

The Full Text of this article is available as a PDF (329.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen W. E., Zicha D., Ridley A. J., Jones G. E. A role for Cdc42 in macrophage chemotaxis. J Cell Biol. 1998 Jun 1;141(5):1147–1157. doi: 10.1083/jcb.141.5.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amatruda T. T., 3rd, Dragas-Graonic S., Holmes R., Perez H. D. Signal transduction by the formyl peptide receptor. Studies using chimeric receptors and site-directed mutagenesis define a novel domain for interaction with G-proteins. J Biol Chem. 1995 Nov 24;270(47):28010–28013. doi: 10.1074/jbc.270.47.28010. [DOI] [PubMed] [Google Scholar]
  3. Amatruda T. T., 3rd, Gerard N. P., Gerard C., Simon M. I. Specific interactions of chemoattractant factor receptors with G-proteins. J Biol Chem. 1993 May 15;268(14):10139–10144. [PubMed] [Google Scholar]
  4. Antón I. M., Lu W., Mayer B. J., Ramesh N., Geha R. S. The Wiskott-Aldrich syndrome protein-interacting protein (WIP) binds to the adaptor protein Nck. J Biol Chem. 1998 Aug 14;273(33):20992–20995. doi: 10.1074/jbc.273.33.20992. [DOI] [PubMed] [Google Scholar]
  5. Arai H., Monteclaro F. S., Tsou C. L., Franci C., Charo I. F. Dissociation of chemotaxis from agonist-induced receptor internalization in a lymphocyte cell line transfected with CCR2B. Evidence that directed migration does not require rapid modulation of signaling at the receptor level. J Biol Chem. 1997 Oct 3;272(40):25037–25042. doi: 10.1074/jbc.272.40.25037. [DOI] [PubMed] [Google Scholar]
  6. Arai H., Tsou C. L., Charo I. F. Chemotaxis in a lymphocyte cell line transfected with C-C chemokine receptor 2B: evidence that directed migration is mediated by betagamma dimers released by activation of Galphai-coupled receptors. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14495–14499. doi: 10.1073/pnas.94.26.14495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Arcaro A. The small GTP-binding protein Rac promotes the dissociation of gelsolin from actin filaments in neutrophils. J Biol Chem. 1998 Jan 9;273(2):805–813. doi: 10.1074/jbc.273.2.805. [DOI] [PubMed] [Google Scholar]
  8. Aspenström P., Lindberg U., Hall A. Two GTPases, Cdc42 and Rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott-Aldrich syndrome. Curr Biol. 1996 Jan 1;6(1):70–75. doi: 10.1016/s0960-9822(02)00423-2. [DOI] [PubMed] [Google Scholar]
  9. Badolato R., Sozzani S., Malacarne F., Bresciani S., Fiorini M., Borsatti A., Albertini A., Mantovani A., Ugazio A. G., Notarangelo L. D. Monocytes from Wiskott-Aldrich patients display reduced chemotaxis and lack of cell polarization in response to monocyte chemoattractant protein-1 and formyl-methionyl-leucyl-phenylalanine. J Immunol. 1998 Jul 15;161(2):1026–1033. [PubMed] [Google Scholar]
  10. Ball Linda J., Jarchau Thomas, Oschkinat Hartmut, Walter Ulrich. EVH1 domains: structure, function and interactions. FEBS Lett. 2002 Feb 20;513(1):45–52. doi: 10.1016/s0014-5793(01)03291-4. [DOI] [PubMed] [Google Scholar]
  11. Banks P., Barker M. D., Burton D. R. Recruitment of actin to the cytoskeletons of human monocyte-like cells activated by complement fragment C5a. Is protein kinase C involved? Biochem J. 1988 Jun 15;252(3):765–769. doi: 10.1042/bj2520765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Binks M., Jones G. E., Brickell P. M., Kinnon C., Katz D. R., Thrasher A. J. Intrinsic dendritic cell abnormalities in Wiskott-Aldrich syndrome. Eur J Immunol. 1998 Oct;28(10):3259–3267. doi: 10.1002/(SICI)1521-4141(199810)28:10<3259::AID-IMMU3259>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  13. Bokoch G. M. Chemoattractant signaling and leukocyte activation. Blood. 1995 Sep 1;86(5):1649–1660. [PubMed] [Google Scholar]
  14. Boulay F., Tardif M., Brouchon L., Vignais P. Synthesis and use of a novel N-formyl peptide derivative to isolate a human N-formyl peptide receptor cDNA. Biochem Biophys Res Commun. 1990 May 16;168(3):1103–1109. doi: 10.1016/0006-291x(90)91143-g. [DOI] [PubMed] [Google Scholar]
  15. Brakeman P. R., Lanahan A. A., O'Brien R., Roche K., Barnes C. A., Huganir R. L., Worley P. F. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature. 1997 Mar 20;386(6622):284–288. doi: 10.1038/386284a0. [DOI] [PubMed] [Google Scholar]
  16. Braun Laurence, Christophe Thierry, Boulay François. Phosphorylation of key serine residues is required for internalization of the complement 5a (C5a) anaphylatoxin receptor via a beta-arrestin, dynamin, and clathrin-dependent pathway. J Biol Chem. 2002 Dec 2;278(6):4277–4285. doi: 10.1074/jbc.M210120200. [DOI] [PubMed] [Google Scholar]
  17. Callebaut I., Cossart P., Dehoux P. EVH1/WH1 domains of VASP and WASP proteins belong to a large family including Ran-binding domains of the RanBP1 family. FEBS Lett. 1998 Dec 18;441(2):181–185. doi: 10.1016/s0014-5793(98)01541-5. [DOI] [PubMed] [Google Scholar]
  18. Castellano F., Le Clainche C., Patin D., Carlier M. F., Chavrier P. A WASp-VASP complex regulates actin polymerization at the plasma membrane. EMBO J. 2001 Oct 15;20(20):5603–5614. doi: 10.1093/emboj/20.20.5603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Castellano F., Montcourrier P., Guillemot J. C., Gouin E., Machesky L., Cossart P., Chavrier P. Inducible recruitment of Cdc42 or WASP to a cell-surface receptor triggers actin polymerization and filopodium formation. Curr Biol. 1999 Apr 8;9(7):351–360. doi: 10.1016/s0960-9822(99)80161-4. [DOI] [PubMed] [Google Scholar]
  20. Christophe T., Rabiet M. J., Tardif M., Milcent M. D., Boulay F. Human complement 5a (C5a) anaphylatoxin receptor (CD88) phosphorylation sites and their specific role in receptor phosphorylation and attenuation of G protein-mediated responses. Desensitization of C5a receptor controls superoxide production but not receptor sequestration in HL-60 cells. J Biol Chem. 2000 Jan 21;275(3):1656–1664. doi: 10.1074/jbc.275.3.1656. [DOI] [PubMed] [Google Scholar]
  21. Derry J. M., Ochs H. D., Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell. 1994 Aug 26;78(4):635–644. doi: 10.1016/0092-8674(94)90528-2. [DOI] [PubMed] [Google Scholar]
  22. Egile C., Loisel T. P., Laurent V., Li R., Pantaloni D., Sansonetti P. J., Carlier M. F. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J Cell Biol. 1999 Sep 20;146(6):1319–1332. doi: 10.1083/jcb.146.6.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Fong Alan M., Premont Richard T., Richardson Ricardo M., Yu Yen-Rei A., Lefkowitz Robert J., Patel Dhavalkumar D. Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7478–7483. doi: 10.1073/pnas.112198299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Foxman E. F., Kunkel E. J., Butcher E. C. Integrating conflicting chemotactic signals. The role of memory in leukocyte navigation. J Cell Biol. 1999 Nov 1;147(3):577–588. doi: 10.1083/jcb.147.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Giannini E., Brouchon L., Boulay F. Identification of the major phosphorylation sites in human C5a anaphylatoxin receptor in vivo. J Biol Chem. 1995 Aug 11;270(32):19166–19172. doi: 10.1074/jbc.270.32.19166. [DOI] [PubMed] [Google Scholar]
  26. Glogauer M., Hartwig J., Stossel T. Two pathways through Cdc42 couple the N-formyl receptor to actin nucleation in permeabilized human neutrophils. J Cell Biol. 2000 Aug 21;150(4):785–796. doi: 10.1083/jcb.150.4.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hannigan Michael, Zhan Lijun, Li Zhong, Ai Youxi, Wu Dianqing, Huang Chi-Kuang. Neutrophils lacking phosphoinositide 3-kinase gamma show loss of directionality during N-formyl-Met-Leu-Phe-induced chemotaxis. Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3603–3608. doi: 10.1073/pnas.052010699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Higgs H. N., Pollard T. D. Activation by Cdc42 and PIP(2) of Wiskott-Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J Cell Biol. 2000 Sep 18;150(6):1311–1320. doi: 10.1083/jcb.150.6.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hirsch E., Katanaev V. L., Garlanda C., Azzolino O., Pirola L., Silengo L., Sozzani S., Mantovani A., Altruda F., Wymann M. P. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science. 2000 Feb 11;287(5455):1049–1053. doi: 10.1126/science.287.5455.1049. [DOI] [PubMed] [Google Scholar]
  30. Jones G. E. Cellular signaling in macrophage migration and chemotaxis. J Leukoc Biol. 2000 Nov;68(5):593–602. [PubMed] [Google Scholar]
  31. Kato M., Miki H., Imai K., Nonoyama S., Suzuki T., Sasakawa C., Takenawa T. Wiskott-Aldrich syndrome protein induces actin clustering without direct binding to Cdc42. J Biol Chem. 1999 Sep 17;274(38):27225–27230. doi: 10.1074/jbc.274.38.27225. [DOI] [PubMed] [Google Scholar]
  32. Kim A. S., Kakalis L. T., Abdul-Manan N., Liu G. A., Rosen M. K. Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature. 2000 Mar 9;404(6774):151–158. doi: 10.1038/35004513. [DOI] [PubMed] [Google Scholar]
  33. Kolluri R., Tolias K. F., Carpenter C. L., Rosen F. S., Kirchhausen T. Direct interaction of the Wiskott-Aldrich syndrome protein with the GTPase Cdc42. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5615–5618. doi: 10.1073/pnas.93.11.5615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kraft K., Olbrich H., Majoul I., Mack M., Proudfoot A., Oppermann M. Characterization of sequence determinants within the carboxyl-terminal domain of chemokine receptor CCR5 that regulate signaling and receptor internalization. J Biol Chem. 2001 Jul 11;276(37):34408–34418. doi: 10.1074/jbc.M102782200. [DOI] [PubMed] [Google Scholar]
  35. Li Z., Jiang H., Xie W., Zhang Z., Smrcka A. V., Wu D. Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science. 2000 Feb 11;287(5455):1046–1049. doi: 10.1126/science.287.5455.1046. [DOI] [PubMed] [Google Scholar]
  36. Machesky L. M., Gould K. L. The Arp2/3 complex: a multifunctional actin organizer. Curr Opin Cell Biol. 1999 Feb;11(1):117–121. doi: 10.1016/s0955-0674(99)80014-3. [DOI] [PubMed] [Google Scholar]
  37. May R. C., Hall M. E., Higgs H. N., Pollard T. D., Chakraborty T., Wehland J., Machesky L. M., Sechi A. S. The Arp2/3 complex is essential for the actin-based motility of Listeria monocytogenes. Curr Biol. 1999 Jul 15;9(14):759–762. doi: 10.1016/s0960-9822(99)80337-6. [DOI] [PubMed] [Google Scholar]
  38. Miki H., Sasaki T., Takai Y., Takenawa T. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature. 1998 Jan 1;391(6662):93–96. doi: 10.1038/34208. [DOI] [PubMed] [Google Scholar]
  39. Naik N., Giannini E., Brouchon L., Boulay F. Internalization and recycling of the C5a anaphylatoxin receptor: evidence that the agonist-mediated internalization is modulated by phosphorylation of the C-terminal domain. J Cell Sci. 1997 Oct;110(Pt 19):2381–2390. doi: 10.1242/jcs.110.19.2381. [DOI] [PubMed] [Google Scholar]
  40. Neptune E. R., Bourne H. R. Receptors induce chemotaxis by releasing the betagamma subunit of Gi, not by activating Gq or Gs. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14489–14494. doi: 10.1073/pnas.94.26.14489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Nobes C. D., Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995 Apr 7;81(1):53–62. doi: 10.1016/0092-8674(95)90370-4. [DOI] [PubMed] [Google Scholar]
  42. Norgauer J., Barbisch M., Czech W., Pareigis J., Schwenk U., Schröder J. M. Chemotactic 5-oxo-icosatetraenoic acids activate a unique pattern of neutrophil responses. Analysis of phospholipid metabolism, intracellular Ca2+ transients, actin reorganization, superoxide-anion production and receptor up-regulation. Eur J Biochem. 1996 Mar 15;236(3):1003–1009. doi: 10.1111/j.1432-1033.1996.01003.x. [DOI] [PubMed] [Google Scholar]
  43. Ochs H. D., Slichter S. J., Harker L. A., Von Behrens W. E., Clark R. A., Wedgwood R. J. The Wiskott-Aldrich syndrome: studies of lymphocytes, granulocytes, and platelets. Blood. 1980 Feb;55(2):243–252. [PubMed] [Google Scholar]
  44. Pierce K. L., Luttrell L. M., Lefkowitz R. J. New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene. 2001 Mar 26;20(13):1532–1539. doi: 10.1038/sj.onc.1204184. [DOI] [PubMed] [Google Scholar]
  45. Ramesh N., Antón I. M., Hartwig J. H., Geha R. S. WIP, a protein associated with wiskott-aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14671–14676. doi: 10.1073/pnas.94.26.14671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rickert P., Weiner O. D., Wang F., Bourne H. R., Servant G. Leukocytes navigate by compass: roles of PI3Kgamma and its lipid products. Trends Cell Biol. 2000 Nov;10(11):466–473. doi: 10.1016/s0962-8924(00)01841-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Rivero-Lezcano O. M., Marcilla A., Sameshima J. H., Robbins K. C. Wiskott-Aldrich syndrome protein physically associates with Nck through Src homology 3 domains. Mol Cell Biol. 1995 Oct;15(10):5725–5731. doi: 10.1128/mcb.15.10.5725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sasaki T., Irie-Sasaki J., Jones R. G., Oliveira-dos-Santos A. J., Stanford W. L., Bolon B., Wakeham A., Itie A., Bouchard D., Kozieradzki I. Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science. 2000 Feb 11;287(5455):1040–1046. doi: 10.1126/science.287.5455.1040. [DOI] [PubMed] [Google Scholar]
  49. Servant G., Weiner O. D., Herzmark P., Balla T., Sedat J. W., Bourne H. R. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science. 2000 Feb 11;287(5455):1037–1040. doi: 10.1126/science.287.5455.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Servant G., Weiner O. D., Neptune E. R., Sedat J. W., Bourne H. R. Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol Biol Cell. 1999 Apr;10(4):1163–1178. doi: 10.1091/mbc.10.4.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. She H. Y., Rockow S., Tang J., Nishimura R., Skolnik E. Y., Chen M., Margolis B., Li W. Wiskott-Aldrich syndrome protein is associated with the adapter protein Grb2 and the epidermal growth factor receptor in living cells. Mol Biol Cell. 1997 Sep;8(9):1709–1721. doi: 10.1091/mbc.8.9.1709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Stephens L. R., Eguinoa A., Erdjument-Bromage H., Lui M., Cooke F., Coadwell J., Smrcka A. S., Thelen M., Cadwallader K., Tempst P. The G beta gamma sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell. 1997 Apr 4;89(1):105–114. doi: 10.1016/s0092-8674(00)80187-7. [DOI] [PubMed] [Google Scholar]
  53. Stewart D. M., Tian L., Nelson D. L. Mutations that cause the Wiskott-Aldrich syndrome impair the interaction of Wiskott-Aldrich syndrome protein (WASP) with WASP interacting protein. J Immunol. 1999 Apr 15;162(8):5019–5024. [PubMed] [Google Scholar]
  54. Stoyanov B., Volinia S., Hanck T., Rubio I., Loubtchenkov M., Malek D., Stoyanova S., Vanhaesebroeck B., Dhand R., Nürnberg B. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science. 1995 Aug 4;269(5224):690–693. doi: 10.1126/science.7624799. [DOI] [PubMed] [Google Scholar]
  55. Suzuki T., Miki H., Takenawa T., Sasakawa C. Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri. EMBO J. 1998 May 15;17(10):2767–2776. doi: 10.1093/emboj/17.10.2767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Symons M., Derry J. M., Karlak B., Jiang S., Lemahieu V., Mccormick F., Francke U., Abo A. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell. 1996 Mar 8;84(5):723–734. doi: 10.1016/s0092-8674(00)81050-8. [DOI] [PubMed] [Google Scholar]
  57. Sánchez-Madrid F., del Pozo M. A. Leukocyte polarization in cell migration and immune interactions. EMBO J. 1999 Feb 1;18(3):501–511. doi: 10.1093/emboj/18.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Tardif M., Mery L., Brouchon L., Boulay F. Agonist-dependent phosphorylation of N-formylpeptide and activation peptide from the fifth component of C (C5a) chemoattractant receptors in differentiated HL60 cells. J Immunol. 1993 Apr 15;150(8 Pt 1):3534–3545. [PubMed] [Google Scholar]
  59. Transy C., Legrain P. The two-hybrid: an in vivo protein-protein interaction assay. Mol Biol Rep. 1995;21(2):119–127. doi: 10.1007/BF00986502. [DOI] [PubMed] [Google Scholar]
  60. Van Aelst L., Barr M., Marcus S., Polverino A., Wigler M. Complex formation between RAS and RAF and other protein kinases. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6213–6217. doi: 10.1073/pnas.90.13.6213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Weiner O. D., Servant G., Welch M. D., Mitchison T. J., Sedat J. W., Bourne H. R. Spatial control of actin polymerization during neutrophil chemotaxis. Nat Cell Biol. 1999 Jun;1(2):75–81. doi: 10.1038/10042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Welch Heidi C. E., Coadwell W. John, Ellson Christian D., Ferguson G. John, Andrews Simon R., Erdjument-Bromage Hediye, Tempst Paul, Hawkins Phillip T., Stephens Len R. P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac. Cell. 2002 Mar 22;108(6):809–821. doi: 10.1016/s0092-8674(02)00663-3. [DOI] [PubMed] [Google Scholar]
  63. Welch M. D., Rosenblatt J., Skoble J., Portnoy D. A., Mitchison T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science. 1998 Jul 3;281(5373):105–108. doi: 10.1126/science.281.5373.105. [DOI] [PubMed] [Google Scholar]
  64. Wu D., LaRosa G. J., Simon M. I. G protein-coupled signal transduction pathways for interleukin-8. Science. 1993 Jul 2;261(5117):101–103. doi: 10.1126/science.8316840. [DOI] [PubMed] [Google Scholar]
  65. Yang C., Huang M., DeBiasio J., Pring M., Joyce M., Miki H., Takenawa T., Zigmond S. H. Profilin enhances Cdc42-induced nucleation of actin polymerization. J Cell Biol. 2000 Sep 4;150(5):1001–1012. doi: 10.1083/jcb.150.5.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Yarar D., To W., Abo A., Welch M. D. The Wiskott-Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr Biol. 1999 May 20;9(10):555–558. doi: 10.1016/s0960-9822(99)80243-7. [DOI] [PubMed] [Google Scholar]
  67. Ye R. D., Boulay F. Structure and function of leukocyte chemoattractant receptors. Adv Pharmacol. 1997;39:221–289. doi: 10.1016/s1054-3589(08)60073-3. [DOI] [PubMed] [Google Scholar]
  68. Zicha D., Allen W. E., Brickell P. M., Kinnon C., Dunn G. A., Jones G. E., Thrasher A. J. Chemotaxis of macrophages is abolished in the Wiskott-Aldrich syndrome. Br J Haematol. 1998 Jun;101(4):659–665. doi: 10.1046/j.1365-2141.1998.00767.x. [DOI] [PubMed] [Google Scholar]
  69. Zigmond S. H., Joyce M., Borleis J., Bokoch G. M., Devreotes P. N. Regulation of actin polymerization in cell-free systems by GTPgammaS and Cdc42. J Cell Biol. 1997 Jul 28;138(2):363–374. doi: 10.1083/jcb.138.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES