Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 1;372(Pt 2):329–334. doi: 10.1042/BJ20030027

Topology of the Erwinia chrysanthemi oligogalacturonate porin KdgM.

Teijo Pellinen 1, Helena Ahlfors 1, Nicolas Blot 1, Guy Condemine 1
PMCID: PMC1223398  PMID: 12603200

Abstract

The Erwinia chrysanthemi oligogalacturonate-specific monomeric porin, KdgM, does not present homology with any porins of known structure. A model of this protein, based on sequence similarity and the amphipathy profile, was constructed. The model depicts a beta-barrel composed of 14 antiparallel beta-strands. The accuracy of this model was tested by the chemical labelling of cysteine residues introduced by site-directed mutagenesis. The protein has seven surface-exposed loops. They are rather small with the exception of one, loop L6. Deletion of this loop allowed the entry of maltopentaose into the bacteria, a molecule too large to enter through the wild-type KdgM. Loop L6 could fold back into the lumen of the pore and play the role of the constriction loop L3 of general porins. With 14 transmembrane segments, the KdgM porin family could represent the smallest porin characterized to date.

Full Text

The Full Text of this article is available as a PDF (205.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behlau M., Mills D. J., Quader H., Kühlbrandt W., Vonck J. Projection structure of the monomeric porin OmpG at 6 A resolution. J Mol Biol. 2001 Jan 5;305(1):71–77. doi: 10.1006/jmbi.2000.4284. [DOI] [PubMed] [Google Scholar]
  2. Bina J., Bains M., Hancock R. E. Functional expression in Escherichia coli and membrane topology of porin HopE, a member of a large family of conserved proteins in Helicobacter pylori. J Bacteriol. 2000 May;182(9):2370–2375. doi: 10.1128/jb.182.9.2370-2375.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blot Nicolas, Berrier Catherine, Hugouvieux-Cotte-Pattat Nicole, Ghazi Alexandre, Condemine Guy. The oligogalacturonate-specific porin KdgM of Erwinia chrysanthemi belongs to a new porin family. J Biol Chem. 2001 Dec 28;277(10):7936–7944. doi: 10.1074/jbc.M109193200. [DOI] [PubMed] [Google Scholar]
  4. Conlan S., Zhang Y., Cheley S., Bayley H. Biochemical and biophysical characterization of OmpG: A monomeric porin. Biochemistry. 2000 Oct 3;39(39):11845–11854. doi: 10.1021/bi001065h. [DOI] [PubMed] [Google Scholar]
  5. Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P. Crystal structures explain functional properties of two E. coli porins. Nature. 1992 Aug 27;358(6389):727–733. doi: 10.1038/358727a0. [DOI] [PubMed] [Google Scholar]
  6. Dutzler R., Wang Y. F., Rizkallah P., Rosenbusch J. P., Schirmer T. Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway. Structure. 1996 Feb 15;4(2):127–134. doi: 10.1016/s0969-2126(96)00016-0. [DOI] [PubMed] [Google Scholar]
  7. Fajardo D. A., Cheung J., Ito C., Sugawara E., Nikaido H., Misra R. Biochemistry and regulation of a novel Escherichia coli K-12 porin protein, OmpG, which produces unusually large channels. J Bacteriol. 1998 Sep;180(17):4452–4459. doi: 10.1128/jb.180.17.4452-4459.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Forst D., Welte W., Wacker T., Diederichs K. Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose. Nat Struct Biol. 1998 Jan;5(1):37–46. doi: 10.1038/nsb0198-37. [DOI] [PubMed] [Google Scholar]
  9. Guédin S., Willery E., Tommassen J., Fort E., Drobecq H., Locht C., Jacob-Dubuisson F. Novel topological features of FhaC, the outer membrane transporter involved in the secretion of the Bordetella pertussis filamentous hemagglutinin. J Biol Chem. 2000 Sep 29;275(39):30202–30210. doi: 10.1074/jbc.M005515200. [DOI] [PubMed] [Google Scholar]
  10. Huang H., Jeanteur D., Pattus F., Hancock R. E. Membrane topology and site-specific mutagenesis of Pseudomonas aeruginosa porin OprD. Mol Microbiol. 1995 Jun;16(5):931–941. doi: 10.1111/j.1365-2958.1995.tb02319.x. [DOI] [PubMed] [Google Scholar]
  11. Koebnik R., Locher K. P., Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol. 2000 Jul;37(2):239–253. doi: 10.1046/j.1365-2958.2000.01983.x. [DOI] [PubMed] [Google Scholar]
  12. Koronakis V., Sharff A., Koronakis E., Luisi B., Hughes C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature. 2000 Jun 22;405(6789):914–919. doi: 10.1038/35016007. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Mobasheri H., Ficht T. A., Marquis H., Lea E. J., Lakey J. H. Brucella Omp2a and Omp2b porins: single channel measurements and topology prediction. FEMS Microbiol Lett. 1997 Oct 1;155(1):23–30. doi: 10.1111/j.1574-6968.1997.tb12681.x. [DOI] [PubMed] [Google Scholar]
  15. Pajatsch M., Andersen C., Mathes A., Böck A., Benz R., Engelhardt H. Properties of a cyclodextrin-specific, unusual porin from Klebsiella oxytoca. J Biol Chem. 1999 Aug 27;274(35):25159–25166. doi: 10.1074/jbc.274.35.25159. [DOI] [PubMed] [Google Scholar]
  16. Phale P. S., Philippsen A., Kiefhaber T., Koebnik R., Phale V. P., Schirmer T., Rosenbusch J. P. Stability of trimeric OmpF porin: the contributions of the latching loop L2. Biochemistry. 1998 Nov 10;37(45):15663–15670. doi: 10.1021/bi981215c. [DOI] [PubMed] [Google Scholar]
  17. Prilipov A., Phale P. S., Van Gelder P., Rosenbusch J. P., Koebnik R. Coupling site-directed mutagenesis with high-level expression: large scale production of mutant porins from E. coli. FEMS Microbiol Lett. 1998 Jun 1;163(1):65–72. doi: 10.1111/j.1574-6968.1998.tb13027.x. [DOI] [PubMed] [Google Scholar]
  18. Puntervoll Pål, Ruud Morten, Bruseth Live J., Kleivdal Hans, Høgh Bente T., Benz Roland, Jensen Harald B. Structural characterization of the fusobacterial non-specific porin FomA suggests a 14-stranded topology, unlike the classical porins. Microbiology. 2002 Nov;148(Pt 11):3395–3403. doi: 10.1099/00221287-148-11-3395. [DOI] [PubMed] [Google Scholar]
  19. Schirmer T., Cowan S. W. Prediction of membrane-spanning beta-strands and its application to maltoporin. Protein Sci. 1993 Aug;2(8):1361–1363. doi: 10.1002/pro.5560020820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schirmer T., Keller T. A., Wang Y. F., Rosenbusch J. P. Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution. Science. 1995 Jan 27;267(5197):512–514. doi: 10.1126/science.7824948. [DOI] [PubMed] [Google Scholar]
  21. Simonet V., Mallea M., Fourel D., Bolla J. M., Pages J. M. Crucial domains are conserved in Enterobacteriaceae porins. FEMS Microbiol Lett. 1996 Feb 1;136(1):91–97. doi: 10.1111/j.1574-6968.1996.tb08030.x. [DOI] [PubMed] [Google Scholar]
  22. Van Gelder P., Saint N., van Boxtel R., Rosenbusch J. P., Tommassen J. Pore functioning of outer membrane protein PhoE of Escherichia coli: mutagenesis of the constriction loop L3. Protein Eng. 1997 Jun;10(6):699–706. doi: 10.1093/protein/10.6.699. [DOI] [PubMed] [Google Scholar]
  23. Wong K. K., Hancock R. E. Insertion mutagenesis and membrane topology model of the Pseudomonas aeruginosa outer membrane protein OprM. J Bacteriol. 2000 May;182(9):2402–2410. doi: 10.1128/jb.182.9.2402-2410.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES