Abstract
Escherichia coli 5'-nucleotidase activity is stimulated 30- to 50-fold in vitro by the addition of Co(2+). Seven residues from conserved sequence motifs implicated in the catalytic and metal-ion-binding sites of E. coli 5'-nucleotidase (Asp(41), His(43), Asp(84), His(117), Glu(118), His(217) and His(252)) were selected for modification using site-directed mutagenesis of the cloned ushA gene. On the basis of comparative studies between the resultant mutant proteins and the wild-type enzyme, a model is proposed for E. coli 5'-nucleotidase in which a Co(2+) ion may displace the Zn(2+) ion at only one of two metal-ion-binding sites; the other metal-ion-binding site retains the Zn(2+) ion already present. The studies reported herein suggest that displacement occurs at the metal-ion-binding site consisting of residues Asp(84), Asn(116), His(217) and His(252), leading to the observed increase in 5'-nucleotidase activity.
Full Text
The Full Text of this article is available as a PDF (138.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burns D. M., Abraham L. J., Beacham I. R. Characterization of the ush gene of Escherichia coli and its protein products. Gene. 1983 Nov;25(2-3):343–353. doi: 10.1016/0378-1119(83)90239-1. [DOI] [PubMed] [Google Scholar]
- Burns D. M., Beacham I. R. Nucleotide sequence and transcriptional analysis of the E. coli ushA gene, encoding periplasmic UDP-sugar hydrolase (5'-nucleotidase): regulation of the ushA gene, and the signal sequence of its encoded protein product. Nucleic Acids Res. 1986 May 27;14(10):4325–4342. doi: 10.1093/nar/14.10.4325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COLEMAN J. E., VALLEE B. L. Metallocarboxypeptidases. J Biol Chem. 1960 Feb;235:390–395. [PubMed] [Google Scholar]
- Dvorak H. F., Heppel L. A. Metallo-enzymes released from Escherichia coli by osmotic shock. II. Evidence that 5'-nucleotidase and cyclic phosphodiesterase are zinc metallo-enzymes. J Biol Chem. 1968 May 25;243(10):2647–2653. [PubMed] [Google Scholar]
- Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
- Glaser L., Melo A., Paul R. Uridine diphosphate sugar hydrolase. Purification of enzyme and protein inhibitor. J Biol Chem. 1967 Apr 25;242(8):1944–1954. [PubMed] [Google Scholar]
- Gomis-Rüth F. X., Grams F., Yiallouros I., Nar H., Küsthardt U., Zwilling R., Bode W., Stöcker W. Crystal structures, spectroscopic features, and catalytic properties of cobalt(II), copper(II), nickel(II), and mercury(II) derivatives of the zinc endopeptidase astacin. A correlation of structure and proteolytic activity. J Biol Chem. 1994 Jun 24;269(25):17111–17117. [PubMed] [Google Scholar]
- Harms E., Wehner A., Jennings M. P., Pugh K. J., Beacham I. R., Röhm K. H. Construction of expression systems for Escherichia coli asparaginase II and two-step purification of the recombinant enzyme from periplasmic extracts. Protein Expr Purif. 1991 Apr-Jun;2(2-3):144–150. doi: 10.1016/1046-5928(91)90063-o. [DOI] [PubMed] [Google Scholar]
- Innes D., Beacham I. R., Beven C. A., Douglas M., Laird M. W., Joly J. C., Burns D. M. The cryptic ushA gene (ushA(c)) in natural isolates of Salmonella enterica (serotype Typhimurium) has been inactivated by a single missense mutation. Microbiology. 2001 Jul;147(Pt 7):1887–1896. doi: 10.1099/00221287-147-7-1887. [DOI] [PubMed] [Google Scholar]
- Klabunde T., Sträter N., Fröhlich R., Witzel H., Krebs B. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures. J Mol Biol. 1996 Jun 21;259(4):737–748. doi: 10.1006/jmbi.1996.0354. [DOI] [PubMed] [Google Scholar]
- Knöfel T., Sträter N. Mechanism of hydrolysis of phosphate esters by the dimetal center of 5'-nucleotidase based on crystal structures. J Mol Biol. 2001 May 25;309(1):239–254. doi: 10.1006/jmbi.2001.4656. [DOI] [PubMed] [Google Scholar]
- Knöfel T., Sträter N. X-ray structure of the Escherichia coli periplasmic 5'-nucleotidase containing a dimetal catalytic site. Nat Struct Biol. 1999 May;6(5):448–453. doi: 10.1038/8253. [DOI] [PubMed] [Google Scholar]
- Koonin E. V. Conserved sequence pattern in a wide variety of phosphoesterases. Protein Sci. 1994 Feb;3(2):356–358. doi: 10.1002/pro.5560030218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
- Kuzuya K., Inouye K. Effects of cobalt-substitution of the active zinc ion in thermolysin on its activity and active-site microenvironment. J Biochem. 2001 Dec;130(6):783–788. doi: 10.1093/oxfordjournals.jbchem.a003049. [DOI] [PubMed] [Google Scholar]
- Maret W., Vallee B. L. Cobalt as probe and label of proteins. Methods Enzymol. 1993;226:52–71. doi: 10.1016/0076-6879(93)26005-t. [DOI] [PubMed] [Google Scholar]
- Mead D. A., Szczesna-Skorupa E., Kemper B. Single-stranded DNA 'blue' T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng. 1986 Oct-Nov;1(1):67–74. doi: 10.1093/protein/1.1.67. [DOI] [PubMed] [Google Scholar]
- Neu H. C., Heppel L. A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem. 1965 Sep;240(9):3685–3692. [PubMed] [Google Scholar]
- Neu H. C. The 5'-nucleotidase of Escherichia coli. I. Purification and properties. J Biol Chem. 1967 Sep 10;242(17):3896–3904. [PubMed] [Google Scholar]
- Neu H. C. The 5'-nucleotidase of Escherichia coli. II. Surface localization and purification of the Escherichia coli 5'-nucleotidase inhibitor. J Biol Chem. 1967 Sep 10;242(17):3905–3911. [PubMed] [Google Scholar]
- Prescott J. M., Wagner F. W., Holmquist B., Vallee B. L. Spectral and kinetic studies of metal-substituted Aeromonas aminopeptidase: nonidentical, interacting metal-binding sites. Biochemistry. 1985 Sep 24;24(20):5350–5356. doi: 10.1021/bi00341a012. [DOI] [PubMed] [Google Scholar]
- Ruiz A., Hurtado C., Meireles Ribeiro J., Sillero A., Günther Sillero M. A. Hydrolysis of bis(5'-nucleosidyl) polyphosphates by Escherichia coli 5'-nucleotidase. J Bacteriol. 1989 Dec;171(12):6703–6709. doi: 10.1128/jb.171.12.6703-6709.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
- Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolnik K. A. Inductively coupled plasma-emission spectrometry. Methods Enzymol. 1988;158:190–205. doi: 10.1016/0076-6879(88)58056-4. [DOI] [PubMed] [Google Scholar]
- Yagil E., Beacham I. R. Uptake of adenosine 5'-monophosphate by Escherichia coli. J Bacteriol. 1975 Feb;121(2):401–405. doi: 10.1128/jb.121.2.401-405.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhuo S., Clemens J. C., Stone R. L., Dixon J. E. Mutational analysis of a Ser/Thr phosphatase. Identification of residues important in phosphoesterase substrate binding and catalysis. J Biol Chem. 1994 Oct 21;269(42):26234–26238. [PubMed] [Google Scholar]