Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 1;372(Pt 2):443–451. doi: 10.1042/BJ20021687

Biochemical and mass spectrometric characterization of soluble ecto-5'-nucleotidase from bull seminal plasma.

Carlo Fini 1, Fabio Talamo 1, Silvia Cherri 1, Marcello Coli 1, Ardesio Floridi 1, Lino Ferrara 1, Andrea Scaloni 1
PMCID: PMC1223402  PMID: 12608891

Abstract

Ecto-5'-nucleotidase (ecto-5'-NT) is a glycosylphosphatidylinositol-anchored membrane-bound protein that is ubiquitous in mammalian tissues. It is a target for a number of therapeutic drugs since increased levels of the enzyme correlate with various disease states. In this investigation, we describe the properties of a soluble ecto-5'-NT derived from bull seminal plasma. The protein was highly heterogeneous as demonstrated by chromatofocusing and two-dimensional PAGE. Sequencing analyses revealed a truncated polypeptide lacking the glycosylphospatidylinositol attachment site, suggesting that it is produced post-translationally by cleavage at Gln(547) and/or Phe(548). Heterogeneity was largely due to differential glycosylation, especially in the oligosaccharides linked to Asn(403). Significant differences in substrate specificity were observed between isoforms and, on the basis of molecular-modelling studies, were interpreted in terms of variable glycosylation causing steric hindrance of the substrate-binding site. Thus the soluble forms of ecto-5'-NT found in bull seminal plasma are unique both biochemically and structurally, and have a putative role in signalling interactions with spermatozoa following ejaculation and capacitation in the female reproductive tract.

Full Text

The Full Text of this article is available as a PDF (224.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allegrini S., Scaloni A., Ferrara L., Pesi R., Pinna P., Sgarrella F., Camici M., Eriksson S., Tozzi M. G. Bovine cytosolic 5'-nucleotidase acts through the formation of an aspartate 52-phosphoenzyme intermediate. J Biol Chem. 2001 Jun 29;276(36):33526–33532. doi: 10.1074/jbc.M104088200. [DOI] [PubMed] [Google Scholar]
  2. Appel R. D., Hochstrasser D. F. Computer analysis of 2-D images. Methods Mol Biol. 1999;112:363–381. doi: 10.1385/1-59259-584-7:363. [DOI] [PubMed] [Google Scholar]
  3. Barton G. J. Protein multiple sequence alignment and flexible pattern matching. Methods Enzymol. 1990;183:403–428. doi: 10.1016/0076-6879(90)83027-7. [DOI] [PubMed] [Google Scholar]
  4. Barton G. J., Sternberg M. J. Evaluation and improvements in the automatic alignment of protein sequences. Protein Eng. 1987 Feb-Mar;1(2):89–94. doi: 10.1093/protein/1.2.89. [DOI] [PubMed] [Google Scholar]
  5. Cooper C. A., Harrison M. J., Wilkins M. R., Packer N. H. GlycoSuiteDB: a new curated relational database of glycoprotein glycan structures and their biological sources. Nucleic Acids Res. 2001 Jan 1;29(1):332–335. doi: 10.1093/nar/29.1.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Damer C. K., Partridge J., Pearson W. R., Haystead T. A. Rapid identification of protein phosphatase 1-binding proteins by mixed peptide sequencing and data base searching. Characterization of a novel holoenzymic form of protein phosphatase 1. J Biol Chem. 1998 Sep 18;273(38):24396–24405. doi: 10.1074/jbc.273.38.24396. [DOI] [PubMed] [Google Scholar]
  7. Doreleijers J. F., Vriend G., Raves M. L., Kaptein R. Validation of nuclear magnetic resonance structures of proteins and nucleic acids: hydrogen geometry and nomenclature. Proteins. 1999 Nov 15;37(3):404–416. doi: 10.1002/(sici)1097-0134(19991115)37:3<404::aid-prot8>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  8. Fini C., Amoresano A., Andolfo A., D'auria S., Floridi A., Paolini S., Pucci P. Mass spectrometry study of ecto-5'-nucleotidase from bull seminal plasma. Eur J Biochem. 2000 Aug;267(16):4978–4987. doi: 10.1046/j.1432-1327.2000.01545.x. [DOI] [PubMed] [Google Scholar]
  9. Fini C., Coli M., Floridi A., D'Auria S., Staiano M., Nucci R., Rossi M. Temperature effects on the structural and functional properties of GPI-anchored and anchor-less bull seminal plasma ecto-5'-nucleotidase. J Biochem. 1998 Feb;123(2):269–274. doi: 10.1093/oxfordjournals.jbchem.a021932. [DOI] [PubMed] [Google Scholar]
  10. Fini C., Palmerini C. A., Damiani P., Stochaj U., Mannherz H. G., Floridi A. 5'-nucleotidase from bull seminal plasma, chicken gizzard and snake venom is a zinc metalloprotein. Biochim Biophys Acta. 1990 Mar 29;1038(1):18–22. doi: 10.1016/0167-4838(90)90004-y. [DOI] [PubMed] [Google Scholar]
  11. Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  12. Görg A., Postel W., Günther S. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 1988 Sep;9(9):531–546. doi: 10.1002/elps.1150090913. [DOI] [PubMed] [Google Scholar]
  13. Klemens M. R., Sherman W. R., Holmberg N. J., Ruedi J. M., Low M. G., Thompson L. F. Characterization of soluble vs membrane-bound human placental 5'-nucleotidase. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1371–1377. doi: 10.1016/0006-291x(90)91601-n. [DOI] [PubMed] [Google Scholar]
  14. Knöfel T., Sträter N. E. coli 5'-nucleotidase undergoes a hinge-bending domain rotation resembling a ball-and-socket motion. J Mol Biol. 2001 May 25;309(1):255–266. doi: 10.1006/jmbi.2001.4657. [DOI] [PubMed] [Google Scholar]
  15. Knöfel T., Sträter N. Mechanism of hydrolysis of phosphate esters by the dimetal center of 5'-nucleotidase based on crystal structures. J Mol Biol. 2001 May 25;309(1):239–254. doi: 10.1006/jmbi.2001.4656. [DOI] [PubMed] [Google Scholar]
  16. Knöfel T., Sträter N. X-ray structure of the Escherichia coli periplasmic 5'-nucleotidase containing a dimetal catalytic site. Nat Struct Biol. 1999 May;6(5):448–453. doi: 10.1038/8253. [DOI] [PubMed] [Google Scholar]
  17. Krause I., Buchberger J., Weiss G., Pflügler M., Klostermeyer H. Isoelectric focusing in immobilized pH gradients with carrier ampholytes added for high-resolution phenotyping of bovine beta-lactoglobulins: characterization of a new genetic variant. Electrophoresis. 1988 Sep;9(9):609–613. doi: 10.1002/elps.1150090925. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lara D. R., Vianna M. R., de Paris F., Quevedo J., Oses J. P., Battastini A. M., Sarkis J. J., Souza D. O. Chronic treatment with clozapine, but not haloperidol, increases striatal ecto-5'-nucleotidase activity in rats. Neuropsychobiology. 2001;44(2):99–102. doi: 10.1159/000054925. [DOI] [PubMed] [Google Scholar]
  20. Lehto M. T., Sharom F. J. Release of the glycosylphosphatidylinositol-anchored enzyme ecto-5'-nucleotidase by phospholipase C: catalytic activation and modulation by the lipid bilayer. Biochem J. 1998 May 15;332(Pt 1):101–109. doi: 10.1042/bj3320101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Obata T., Kubota S., Yamanaka Y. Histamine increases interstitial adenosine concentration via activation of ecto-5'-nucleotidase in rat hearts in vivo. J Pharmacol Exp Ther. 2001 Jul;298(1):71–76. [PubMed] [Google Scholar]
  22. Sato T., Obata T., Yamanaka Y., Arita M. Nicorandil increases adenosine 5'-monophosphate-primed interstitial adenosine via activation of ecto-5'-nucleotidase in rat hearts. Heart Vessels. 2000;15(2):81–85. doi: 10.1007/s003800070036. [DOI] [PubMed] [Google Scholar]
  23. Schiemann P. J., Aliante M., Wennemuth G., Fini C., Aumüller G. Distribution of endogenous and exogenous 5'-nucleotidase on bovine spermatozoa. Histochemistry. 1994 Apr;101(4):253–262. doi: 10.1007/BF00315912. [DOI] [PubMed] [Google Scholar]
  24. Shevchenko A., Wilm M., Vorm O., Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996 Mar 1;68(5):850–858. doi: 10.1021/ac950914h. [DOI] [PubMed] [Google Scholar]
  25. Stochaj U., Dieckhoff J., Mollenhauer J., Cramer M., Mannherz H. G. Evidence for the direct interaction of chicken gizzard 5'-nucleotidase with laminin and fibronectin. Biochim Biophys Acta. 1989 Sep 15;992(3):385–392. doi: 10.1016/0304-4165(89)90101-3. [DOI] [PubMed] [Google Scholar]
  26. Taguchi R., Hamakawa N., Maekawa N., Ikezawa H. Application of electrospray ionization MS/MS and matrix-assisted laser desorption/ionization-time of flight mass spectrometry to structural analysis of the glycosyl-phosphatidylinositol-anchored protein. J Biochem. 1999 Aug;126(2):421–429. doi: 10.1093/oxfordjournals.jbchem.a022467. [DOI] [PubMed] [Google Scholar]
  27. Wortmann R. L., Veum J. A., Rachow J. W. Synovial fluid 5'-nucleotidase activity. Relationship to other purine catabolic enzymes and to arthropathies associated with calcium crystal deposition. Arthritis Rheum. 1991 Aug;34(8):1014–1020. doi: 10.1002/art.1780340811. [DOI] [PubMed] [Google Scholar]
  28. Zimmermann H. 5'-Nucleotidase: molecular structure and functional aspects. Biochem J. 1992 Jul 15;285(Pt 2):345–365. doi: 10.1042/bj2850345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zou A. P., Wu F., Li P. L., Cowley A. W., Jr Effect of chronic salt loading on adenosine metabolism and receptor expression in renal cortex and medulla in rats. Hypertension. 1999 Jan;33(1 Pt 2):511–516. doi: 10.1161/01.hyp.33.1.511. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES