Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 1;372(Pt 2):555–566. doi: 10.1042/BJ20021266

Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability.

Anne Beugnet 1, Andrew R Tee 1, Peter M Taylor 1, Christopher G Proud 1
PMCID: PMC1223408  PMID: 12611592

Abstract

In mammalian cells, amino acids affect the phosphorylation state and function of several proteins involved in mRNA translation that are regulated via the rapamycin-sensitive mTOR (mammalian target of rapamycin) pathway. These include ribosomal protein S6 kinase, S6K1, and eukaryotic initiation factor 4E-binding protein, 4E-BP1. Amino acids, especially branched-chain amino acids, such as leucine, promote phosphorylation of 4E-BP1 and S6K1, and permit insulin to further increase their phosphorylation. However, it is not clear whether these effects are exerted by extracellular or intracellular amino acids. Inhibition of protein synthesis is expected to increase the intracellular level of amino acids, whereas inhibiting proteolysis has the opposite effect. We show in the present study that inhibition of protein synthesis by any of several protein synthesis inhibitors tested allows insulin to regulate 4E-BP1 or S6K1 in amino-acid-deprived cells, as does the addition of amino acids to the medium. In particular, insulin activates S6K1 and promotes initiation factor complex assembly in amino-acid-deprived cells treated with protein synthesis inhibitors, but cannot do so in the absence of these compounds. Their effects occur at concentrations commensurate with their inhibition of protein synthesis and are not due to activation of stress-activated kinase cascades. Inhibition of protein breakdown (autophagy) impairs the ability of insulin to regulate 4E-BP1 or S6K1 under such conditions. These and other data presented in the current study are consistent with the idea that it is intracellular amino acid levels that regulate mTOR signalling.

Full Text

The Full Text of this article is available as a PDF (365.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avruch J., Belham C., Weng Q., Hara K., Yonezawa K. The p70 S6 kinase integrates nutrient and growth signals to control translational capacity. Prog Mol Subcell Biol. 2001;26:115–154. doi: 10.1007/978-3-642-56688-2_5. [DOI] [PubMed] [Google Scholar]
  2. Berlanga J. J., Santoyo J., De Haro C. Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2alpha kinase. Eur J Biochem. 1999 Oct;265(2):754–762. doi: 10.1046/j.1432-1327.1999.00780.x. [DOI] [PubMed] [Google Scholar]
  3. Bogoyevitch M. A., Ketterman A. J., Sugden P. H. Cellular stresses differentially activate c-Jun N-terminal protein kinases and extracellular signal-regulated protein kinases in cultured ventricular myocytes. J Biol Chem. 1995 Dec 15;270(50):29710–29717. doi: 10.1074/jbc.270.50.29710. [DOI] [PubMed] [Google Scholar]
  4. Boylan J. M., Anand P., Gruppuso P. A. Ribosomal protein S6 phosphorylation and function during late gestation liver development in the rat. J Biol Chem. 2001 Sep 26;276(48):44457–44463. doi: 10.1074/jbc.M103457200. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Burgering B. M., Coffer P. J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature. 1995 Aug 17;376(6541):599–602. doi: 10.1038/376599a0. [DOI] [PubMed] [Google Scholar]
  7. Campbell L. E., Wang X., Proud C. G. Nutrients differentially regulate multiple translation factors and their control by insulin. Biochem J. 1999 Dec 1;344(Pt 2):433–441. [PMC free article] [PubMed] [Google Scholar]
  8. Cano E., Hazzalin C. A., Mahadevan L. C. Anisomycin-activated protein kinases p45 and p55 but not mitogen-activated protein kinases ERK-1 and -2 are implicated in the induction of c-fos and c-jun. Mol Cell Biol. 1994 Nov;14(11):7352–7362. doi: 10.1128/mcb.14.11.7352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chang L., Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001 Mar 1;410(6824):37–40. doi: 10.1038/35065000. [DOI] [PubMed] [Google Scholar]
  10. Christie Graham R., Hajduch Eric, Hundal Harinder S., Proud Christopher G., Taylor Peter M. Intracellular sensing of amino acids in Xenopus laevis oocytes stimulates p70 S6 kinase in a target of rapamycin-dependent manner. J Biol Chem. 2002 Jan 11;277(12):9952–9957. doi: 10.1074/jbc.M107694200. [DOI] [PubMed] [Google Scholar]
  11. Colthurst D. R., Campbell D. G., Proud C. G. Structure and regulation of eukaryotic initiation factor eIF-2. Sequence of the site in the alpha subunit phosphorylated by the haem-controlled repressor and by the double-stranded RNA-activated inhibitor. Eur J Biochem. 1987 Jul 15;166(2):357–363. doi: 10.1111/j.1432-1033.1987.tb13523.x. [DOI] [PubMed] [Google Scholar]
  12. Cuenda A., Rouse J., Doza Y. N., Meier R., Cohen P., Gallagher T. F., Young P. R., Lee J. C. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 1995 May 8;364(2):229–233. doi: 10.1016/0014-5793(95)00357-f. [DOI] [PubMed] [Google Scholar]
  13. DeGracia D. J., Sullivan J. M., Neumar R. W., Alousi S. S., Hikade K. R., Pittman J. E., White B. C., Rafols J. A., Krause G. S. Effect of brain ischemia and reperfusion on the localization of phosphorylated eukaryotic initiation factor 2 alpha. J Cereb Blood Flow Metab. 1997 Dec;17(12):1291–1302. doi: 10.1097/00004647-199712000-00004. [DOI] [PubMed] [Google Scholar]
  14. Dennis P. B., Jaeschke A., Saitoh M., Fowler B., Kozma S. C., Thomas G. Mammalian TOR: a homeostatic ATP sensor. Science. 2001 Nov 2;294(5544):1102–1105. doi: 10.1126/science.1063518. [DOI] [PubMed] [Google Scholar]
  15. Dickens M., Chin J. E., Roth R. A., Ellis L., Denton R. M., Tavaré J. M. Characterization of insulin-stimulated protein serine/threonine kinases in CHO cells expressing human insulin receptors with point and deletion mutations. Biochem J. 1992 Oct 1;287(Pt 1):201–209. doi: 10.1042/bj2870201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Diggle T. A., Moule S. K., Avison M. B., Flynn A., Foulstone E. J., Proud C. G., Denton R. M. Both rapamycin-sensitive and -insensitive pathways are involved in the phosphorylation of the initiation factor-4E-binding protein (4E-BP1) in response to insulin in rat epididymal fat-cells. Biochem J. 1996 Jun 1;316(Pt 2):447–453. doi: 10.1042/bj3160447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dufner A., Andjelkovic M., Burgering B. M., Hemmings B. A., Thomas G. Protein kinase B localization and activation differentially affect S6 kinase 1 activity and eukaryotic translation initiation factor 4E-binding protein 1 phosphorylation. Mol Cell Biol. 1999 Jun;19(6):4525–4534. doi: 10.1128/mcb.19.6.4525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Flynn A., Proud C. G. Insulin and phorbol ester stimulate initiation factor eIF-4E phosphorylation by distinct pathways in Chinese hamster ovary cells overexpressing the insulin receptor. Eur J Biochem. 1996 Feb 15;236(1):40–47. doi: 10.1111/j.1432-1033.1996.00040.x. [DOI] [PubMed] [Google Scholar]
  19. Gao Xinsheng, Zhang Yong, Arrazola Peter, Hino Okio, Kobayashi Toshiyuki, Yeung Raymond S., Ru Binggeng, Pan Duojia. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol. 2002 Sep;4(9):699–704. doi: 10.1038/ncb847. [DOI] [PubMed] [Google Scholar]
  20. Gingras A. C., Kennedy S. G., O'Leary M. A., Sonenberg N., Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 1998 Feb 15;12(4):502–513. doi: 10.1101/gad.12.4.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gingras A. C., Raught B., Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001 Apr 1;15(7):807–826. doi: 10.1101/gad.887201. [DOI] [PubMed] [Google Scholar]
  22. Gingras A. C., Raught B., Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem. 1999;68:913–963. doi: 10.1146/annurev.biochem.68.1.913. [DOI] [PubMed] [Google Scholar]
  23. Gleeson M., Maughan R. J. A simple enzymatic fluorimetric method for the determination of branched-chain L-amino acids in microlitre volumes of plasma. Clin Chim Acta. 1987 Jul 15;166(2-3):163–169. doi: 10.1016/0009-8981(87)90418-9. [DOI] [PubMed] [Google Scholar]
  24. Hara K., Yonezawa K., Weng Q. P., Kozlowski M. T., Belham C., Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem. 1998 Jun 5;273(23):14484–14494. doi: 10.1074/jbc.273.23.14484. [DOI] [PubMed] [Google Scholar]
  25. Hara Kenta, Maruki Yoshiko, Long Xiaomeng, Yoshino Ken-ichi, Oshiro Noriko, Hidayat Sujuti, Tokunaga Chiharu, Avruch Joseph, Yonezawa Kazuyoshi. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002 Jul 26;110(2):177–189. doi: 10.1016/s0092-8674(02)00833-4. [DOI] [PubMed] [Google Scholar]
  26. Harding H. P., Zeng H., Zhang Y., Jungries R., Chung P., Plesken H., Sabatini D. D., Ron D. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell. 2001 Jun;7(6):1153–1163. doi: 10.1016/s1097-2765(01)00264-7. [DOI] [PubMed] [Google Scholar]
  27. Herbert Terence P., Tee Andrew R., Proud Christopher G. The extracellular signal-regulated kinase pathway regulates the phosphorylation of 4E-BP1 at multiple sites. J Biol Chem. 2002 Jan 17;277(13):11591–11596. doi: 10.1074/jbc.M110367200. [DOI] [PubMed] [Google Scholar]
  28. Iiboshi Y., Papst P. J., Kawasome H., Hosoi H., Abraham R. T., Houghton P. J., Terada N. Amino acid-dependent control of p70(s6k). Involvement of tRNA aminoacylation in the regulation. J Biol Chem. 1999 Jan 8;274(2):1092–1099. doi: 10.1074/jbc.274.2.1092. [DOI] [PubMed] [Google Scholar]
  29. Iraqui I., Vissers S., Bernard F., de Craene J. O., Boles E., Urrestarazu A., André B. Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol Cell Biol. 1999 Feb;19(2):989–1001. doi: 10.1128/mcb.19.2.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jefferies H. B., Fumagalli S., Dennis P. B., Reinhard C., Pearson R. B., Thomas G. Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k. EMBO J. 1997 Jun 16;16(12):3693–3704. doi: 10.1093/emboj/16.12.3693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Jefferies H. B., Reinhard C., Kozma S. C., Thomas G. Rapamycin selectively represses translation of the "polypyrimidine tract" mRNA family. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4441–4445. doi: 10.1073/pnas.91.10.4441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kim Do-Hyung, Sarbassov D. D., Ali Siraj M., King Jessie E., Latek Robert R., Erdjument-Bromage Hediye, Tempst Paul, Sabatini David M. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002 Jul 26;110(2):163–175. doi: 10.1016/s0092-8674(02)00808-5. [DOI] [PubMed] [Google Scholar]
  33. Kimball S. R. Regulation of translation initiation by amino acids in eukaryotic cells. Prog Mol Subcell Biol. 2001;26:155–184. doi: 10.1007/978-3-642-56688-2_6. [DOI] [PubMed] [Google Scholar]
  34. Kimball Scot R., Jefferson Leonard S. Control of protein synthesis by amino acid availability. Curr Opin Clin Nutr Metab Care. 2002 Jan;5(1):63–67. doi: 10.1097/00075197-200201000-00012. [DOI] [PubMed] [Google Scholar]
  35. Kitamura T., Ogawa W., Sakaue H., Hino Y., Kuroda S., Takata M., Matsumoto M., Maeda T., Konishi H., Kikkawa U. Requirement for activation of the serine-threonine kinase Akt (protein kinase B) in insulin stimulation of protein synthesis but not of glucose transport. Mol Cell Biol. 1998 Jul;18(7):3708–3717. doi: 10.1128/mcb.18.7.3708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Li W., Belsham G. J., Proud C. G. Eukaryotic initiation factors 4A (eIF4A) and 4G (eIF4G) mutually interact in a 1:1 ratio in vivo. J Biol Chem. 2001 Jun 14;276(31):29111–29115. doi: 10.1074/jbc.C100284200. [DOI] [PubMed] [Google Scholar]
  37. Lin T. A., Lawrence J. C., Jr Control of the translational regulators PHAS-I and PHAS-II by insulin and cAMP in 3T3-L1 adipocytes. J Biol Chem. 1996 Nov 22;271(47):30199–30204. doi: 10.1074/jbc.271.47.30199. [DOI] [PubMed] [Google Scholar]
  38. Mader S., Lee H., Pause A., Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol. 1995 Sep;15(9):4990–4997. doi: 10.1128/mcb.15.9.4990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. McLeod L. E., Wang L., Proud C. G. beta-Adrenergic agonists increase phosphorylation of elongation factor 2 in cardiomyocytes without eliciting calcium-independent eEF2 kinase activity. FEBS Lett. 2001 Feb 2;489(2-3):225–228. doi: 10.1016/s0014-5793(01)02100-7. [DOI] [PubMed] [Google Scholar]
  40. McManus Edward J., Alessi Dario R. TSC1-TSC2: a complex tale of PKB-mediated S6K regulation. Nat Cell Biol. 2002 Sep;4(9):E214–E216. doi: 10.1038/ncb0902-e214. [DOI] [PubMed] [Google Scholar]
  41. Mortimore G. E., Wert J. J., Jr, Miotto G., Venerando R., Kadowaki M. Leucine-specific binding of photoreactive Leu7-MAP to a high molecular weight protein on the plasma membrane of the isolated rat hepatocyte. Biochem Biophys Res Commun. 1994 Aug 30;203(1):200–208. doi: 10.1006/bbrc.1994.2168. [DOI] [PubMed] [Google Scholar]
  42. Moule S. K., Edgell N. J., Welsh G. I., Diggle T. A., Foulstone E. J., Heesom K. J., Proud C. G., Denton R. M. Multiple signalling pathways involved in the stimulation of fatty acid and glycogen synthesis by insulin in rat epididymal fat cells. Biochem J. 1995 Oct 15;311(Pt 2):595–601. doi: 10.1042/bj3110595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Patel J., Wang X., Proud C. G. Glucose exerts a permissive effect on the regulation of the initiation factor 4E binding protein 4E-BP1. Biochem J. 2001 Sep 1;358(Pt 2):497–503. doi: 10.1042/0264-6021:3580497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Pham P. T., Heydrick S. J., Fox H. L., Kimball S. R., Jefferson L. S., Jr, Lynch C. J. Assessment of cell-signaling pathways in the regulation of mammalian target of rapamycin (mTOR) by amino acids in rat adipocytes. J Cell Biochem. 2000 Sep 7;79(3):427–441. doi: 10.1002/1097-4644(20001201)79:3<427::aid-jcb80>3.0.co;2-0. [DOI] [PubMed] [Google Scholar]
  45. Price D. J., Nemenoff R. A., Avruch J. Purification of a hepatic S6 kinase from cycloheximide-treated Rats. J Biol Chem. 1989 Aug 15;264(23):13825–13833. [PubMed] [Google Scholar]
  46. Price N. T., Nakielny S. F., Clark S. J., Proud C. G. The two forms of the beta-subunit of initiation factor-2 from reticulocyte lysates arise from proteolytic degradation. Biochim Biophys Acta. 1989 Jul 7;1008(2):177–182. doi: 10.1016/0167-4781(80)90005-6. [DOI] [PubMed] [Google Scholar]
  47. Radimerski Thomas, Montagne Jacques, Rintelen Felix, Stocker Hugo, van der Kaay Jeroen, Downes C. Peter, Hafen Ernst, Thomas George. dS6K-regulated cell growth is dPKB/dPI(3)K-independent, but requires dPDK1. Nat Cell Biol. 2002 Mar;4(3):251–255. doi: 10.1038/ncb763. [DOI] [PubMed] [Google Scholar]
  48. Raught B., Gingras A. C., Sonenberg N. The target of rapamycin (TOR) proteins. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7037–7044. doi: 10.1073/pnas.121145898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Seglen P. O., Gordon P. B. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1889–1892. doi: 10.1073/pnas.79.6.1889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sood R., Porter A. C., Olsen D. A., Cavener D. R., Wek R. C. A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2alpha. Genetics. 2000 Feb;154(2):787–801. doi: 10.1093/genetics/154.2.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Stokoe D., Campbell D. G., Nakielny S., Hidaka H., Leevers S. J., Marshall C., Cohen P. MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase. EMBO J. 1992 Nov;11(11):3985–3994. doi: 10.1002/j.1460-2075.1992.tb05492.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Stolovich Miri, Tang Hua, Hornstein Eran, Levy Galit, Cohen Ruth, Bae Sun Sik, Birnbaum Morris J., Meyuhas Oded. Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Mol Cell Biol. 2002 Dec;22(23):8101–8113. doi: 10.1128/MCB.22.23.8101-8113.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Tang H., Hornstein E., Stolovich M., Levy G., Livingstone M., Templeton D., Avruch J., Meyuhas O. Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol Cell Biol. 2001 Dec;21(24):8671–8683. doi: 10.1128/MCB.21.24.8671-8683.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Tee A. R., Proud C. G. DNA-damaging agents cause inactivation of translational regulators linked to mTOR signalling. Oncogene. 2000 Jun 15;19(26):3021–3031. doi: 10.1038/sj.onc.1203622. [DOI] [PubMed] [Google Scholar]
  55. Wang L., Gout I., Proud C. G. Cross-talk between the ERK and p70 S6 kinase (S6K) signaling pathways. MEK-dependent activation of S6K2 in cardiomyocytes. J Biol Chem. 2001 Jun 28;276(35):32670–32677. doi: 10.1074/jbc.M102776200. [DOI] [PubMed] [Google Scholar]
  56. Wang X., Campbell L. E., Miller C. M., Proud C. G. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J. 1998 Aug 15;334(Pt 1):261–267. doi: 10.1042/bj3340261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Zinck R., Cahill M. A., Kracht M., Sachsenmaier C., Hipskind R. A., Nordheim A. Protein synthesis inhibitors reveal differential regulation of mitogen-activated protein kinase and stress-activated protein kinase pathways that converge on Elk-1. Mol Cell Biol. 1995 Sep;15(9):4930–4938. doi: 10.1128/mcb.15.9.4930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. von Manteuffel S. R., Gingras A. C., Ming X. F., Sonenberg N., Thomas G. 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4076–4080. doi: 10.1073/pnas.93.9.4076. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES