Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 1;372(Pt 2):317–327. doi: 10.1042/BJ20021692

Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.

Kirsty J McLean 1, Nigel S Scrutton 1, Andrew W Munro 1
PMCID: PMC1223410  PMID: 12614197

Abstract

The genome sequence of the pathogenic bacterium Mycobacterium tuberculosis revealed numerous cytochrome P450 enzymes, which require accessory redox enzymes for catalytic function (ferredoxin reductase and ferredoxin). The most likely ferredoxin reductase is encoded by fprA, and its structure resembles eukaryotic adrenodoxin reductases. We have cloned, expressed and purified the flavoenzyme product of the fprA gene in Escherichia coli. FprA reduces various electron acceptors using either NADPH or NADH as the electron donor, but discriminates in favour of NADPH (apparent K (m) for NADH=50.6+/-3.1 microM; NADPH=4.1+/-0.3 microM from ferricyanide reduction experiments). Stopped-flow studies of reduction of the FprA FAD by NADPH demonstrate increased flavin reduction rate at low NADPH concentration (<200 microM), consistent with the presence of a second, kinetically distinct and inhibitory, pyridine nucleotide-binding site, similar to that identified in human cytochrome P450 reductase [Gutierrez, Lian, Wolf, Scrutton and Roberts (2001) Biochemistry 40, 1964-1975]. Flavin reduction by NADH is slower than with NADPH and displays hyperbolic dependence on NADH concentration [maximal reduction rate ( k (red))=25.4+/-0.7 s(-1), apparent K (d)=42.9+/-4.6 microM]. Flavin reoxidation by molecular oxygen is more rapid for NADH-reduced enzyme. Reductive titrations show that the enzyme forms a species with spectral characteristics typical of a neutral (blue) FAD semiquinone only on reduction with NADPH, consistent with EPR studies. The second order dependence of semiquinone formation on the concentration of FprA indicates a disproportionation reaction involving oxidized and two-electron-reduced FprA. Titration of FprA with dithionite converts oxidized FAD into the hydroquinone form; the flavin semiquinone is not populated under these conditions. The midpoint reduction potential for the two electron couple is -235+/-5 mV (versus the normal hydrogen electrode), similar to that for adrenodoxin reductase (-274 mV). Our data provide a thermodynamic and transient kinetic framework for catalysis by FprA, and complement recent spectrophotometric and steady-state studies of the enzyme [Fischer, Raimondi, Aliverti and Zanetti (2002) Eur. J. Biochem. 269, 3005-3013].

Full Text

The Full Text of this article is available as a PDF (213.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baulard A. R., Betts J. C., Engohang-Ndong J., Quan S., McAdam R. A., Brennan P. J., Locht C., Besra G. S. Activation of the pro-drug ethionamide is regulated in mycobacteria. J Biol Chem. 2000 Sep 8;275(36):28326–28331. doi: 10.1074/jbc.M003744200. [DOI] [PubMed] [Google Scholar]
  2. Bellamine A., Mangla A. T., Nes W. D., Waterman M. R. Characterization and catalytic properties of the sterol 14alpha-demethylase from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8937–8942. doi: 10.1073/pnas.96.16.8937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bentley S. D., Chater K. F., Cerdeño-Tárraga A-M, Challis G. L., Thomson N. R., James K. D., Harris D. E., Quail M. A., Kieser H., Harper D. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature. 2002 May 9;417(6885):141–147. doi: 10.1038/417141a. [DOI] [PubMed] [Google Scholar]
  4. Bossi Roberto T., Aliverti Alessandro, Raimondi Debora, Fischer Federico, Zanetti Giuliana, Ferrari Davide, Tahallah Nora, Maier Claudia S., Heck Albert J. R., Rizzi Menico. A covalent modification of NADP+ revealed by the atomic resolution structure of FprA, a Mycobacterium tuberculosis oxidoreductase. Biochemistry. 2002 Jul 16;41(28):8807–8818. doi: 10.1021/bi025858a. [DOI] [PubMed] [Google Scholar]
  5. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S., Barry C. E., 3rd Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998 Jun 11;393(6685):537–544. doi: 10.1038/31159. [DOI] [PubMed] [Google Scholar]
  6. Craig Daniel H., Chapman Stephen K., Daff Simon. Calmodulin activates electron transfer through neuronal nitric-oxide synthase reductase domain by releasing an NADPH-dependent conformational lock. J Biol Chem. 2002 Jun 27;277(37):33987–33994. doi: 10.1074/jbc.M203118200. [DOI] [PubMed] [Google Scholar]
  7. Daff S. N., Chapman S. K., Turner K. L., Holt R. A., Govindaraj S., Poulos T. L., Munro A. W. Redox control of the catalytic cycle of flavocytochrome P-450 BM3. Biochemistry. 1997 Nov 11;36(45):13816–13823. doi: 10.1021/bi971085s. [DOI] [PubMed] [Google Scholar]
  8. Daffé M., Draper P. The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol. 1998;39:131–203. doi: 10.1016/s0065-2911(08)60016-8. [DOI] [PubMed] [Google Scholar]
  9. Dutton P. L. Redox potentiometry: determination of midpoint potentials of oxidation-reduction components of biological electron-transfer systems. Methods Enzymol. 1978;54:411–435. doi: 10.1016/s0076-6879(78)54026-3. [DOI] [PubMed] [Google Scholar]
  10. Fischer Federico, Raimondi Debora, Aliverti Alessandro, Zanetti Giuliana. Mycobacterium tuberculosis FprA, a novel bacterial NADPH-ferredoxin reductase. Eur J Biochem. 2002 Jun;269(12):3005–3013. doi: 10.1046/j.1432-1033.2002.02989.x. [DOI] [PubMed] [Google Scholar]
  11. Grinberg A. V., Hannemann F., Schiffler B., Müller J., Heinemann U., Bernhardt R. Adrenodoxin: structure, stability, and electron transfer properties. Proteins. 2000 Sep 1;40(4):590–612. doi: 10.1002/1097-0134(20000901)40:4<590::aid-prot50>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  12. Guengerich F. P., Hosea N. A., Parikh A., Bell-Parikh L. C., Johnson W. W., Gillam E. M., Shimada T. Twenty years of biochemistry of human P450s: purification, expression, mechanism, and relevance to drugs. Drug Metab Dispos. 1998 Dec;26(12):1175–1178. [PubMed] [Google Scholar]
  13. Gutierrez A., Lian L. Y., Wolf C. R., Scrutton N. S., Roberts G. C. Stopped-flow kinetic studies of flavin reduction in human cytochrome P450 reductase and its component domains. Biochemistry. 2001 Feb 20;40(7):1964–1975. doi: 10.1021/bi001719m. [DOI] [PubMed] [Google Scholar]
  14. Gutierrez Aldo, Paine Mark, Wolf C. Roland, Scrutton Nigel S., Roberts Gordon C. K. Relaxation kinetics of cytochrome P450 reductase: internal electron transfer is limited by conformational change and regulated by coenzyme binding. Biochemistry. 2002 Apr 9;41(14):4626–4637. doi: 10.1021/bi0159433. [DOI] [PubMed] [Google Scholar]
  15. Knight Kirsty, Scrutton Nigel S. Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase. Biochem J. 2002 Oct 1;367(Pt 1):19–30. doi: 10.1042/BJ20020667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lambeth J. D., Kamin H. Adrenodoxin reductase. Properties of the complexes of reduced enzyme with NADP+ and NADPH. J Biol Chem. 1976 Jul 25;251(14):4299–4306. [PubMed] [Google Scholar]
  17. Leadbeater C., McIver L., Campopiano D. J., Webster S. P., Baxter R. L., Kelly S. M., Price N. C., Lysek D. A., Noble M. A., Chapman S. K. Probing the NADPH-binding site of Escherichia coli flavodoxin oxidoreductase. Biochem J. 2000 Dec 1;352(Pt 2):257–266. [PMC free article] [PubMed] [Google Scholar]
  18. Leys David, Mowat Christopher G., McLean Kirsty J., Richmond Alison, Chapman Stephen K., Walkinshaw Malcolm D., Munro Andrew W. Atomic structure of Mycobacterium tuberculosis CYP121 to 1.06 A reveals novel features of cytochrome P450. J Biol Chem. 2002 Nov 14;278(7):5141–5147. doi: 10.1074/jbc.M209928200. [DOI] [PubMed] [Google Scholar]
  19. McIver L., Leadbeater C., Campopiano D. J., Baxter R. L., Daff S. N., Chapman S. K., Munro A. W. Characterisation of flavodoxin NADP+ oxidoreductase and flavodoxin; key components of electron transfer in Escherichia coli. Eur J Biochem. 1998 Nov 1;257(3):577–585. doi: 10.1046/j.1432-1327.1998.2570577.x. [DOI] [PubMed] [Google Scholar]
  20. McLean Kirsty J., Cheesman Myles R., Rivers Stuart L., Richmond Alison, Leys David, Chapman Stephen K., Reid Graeme A., Price Nicholas C., Kelly Sharon M., Clarkson John. Expression, purification and spectroscopic characterization of the cytochrome P450 CYP121 from Mycobacterium tuberculosis. J Inorg Biochem. 2002 Sep 20;91(4):527–541. doi: 10.1016/s0162-0134(02)00479-8. [DOI] [PubMed] [Google Scholar]
  21. McLean Kirsty J., Marshall Ker R., Richmond Alison, Hunter Iain S., Fowler Kay, Kieser Tobias, Gurcha Sudagar S., Besra Gurydal S., Munro Andrew W. Azole antifungals are potent inhibitors of cytochrome P450 mono-oxygenases and bacterial growth in mycobacteria and streptomycetes. Microbiology. 2002 Oct;148(Pt 10):2937–2949. doi: 10.1099/00221287-148-10-2937. [DOI] [PubMed] [Google Scholar]
  22. Munro A. W., Lindsay J. G. Bacterial cytochromes P-450. Mol Microbiol. 1996 Jun;20(6):1115–1125. doi: 10.1111/j.1365-2958.1996.tb02632.x. [DOI] [PubMed] [Google Scholar]
  23. Munro A. W., Noble M. A. Fluorescence analysis of flavoproteins. Methods Mol Biol. 1999;131:25–48. doi: 10.1385/1-59259-266-X:25. [DOI] [PubMed] [Google Scholar]
  24. Munro A. W., Noble M. A., Robledo L., Daff S. N., Chapman S. K. Determination of the redox properties of human NADPH-cytochrome P450 reductase. Biochemistry. 2001 Feb 20;40(7):1956–1963. doi: 10.1021/bi001718u. [DOI] [PubMed] [Google Scholar]
  25. Murataliev M. B., Feyereisen R. Interaction of NADP(H) with oxidized and reduced P450 reductase during catalysis. Studies with nucleotide analogues. Biochemistry. 2000 May 2;39(17):5066–5074. doi: 10.1021/bi992917k. [DOI] [PubMed] [Google Scholar]
  26. Müller J. J., Lapko A., Bourenkov G., Ruckpaul K., Heinemann U. Adrenodoxin reductase-adrenodoxin complex structure suggests electron transfer path in steroid biosynthesis. J Biol Chem. 2000 Oct 25;276(4):2786–2789. doi: 10.1074/jbc.M008501200. [DOI] [PubMed] [Google Scholar]
  27. Nelson D. R., Koymans L., Kamataki T., Stegeman J. J., Feyereisen R., Waxman D. J., Waterman M. R., Gotoh O., Coon M. J., Estabrook R. W. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics. 1996 Feb;6(1):1–42. doi: 10.1097/00008571-199602000-00002. [DOI] [PubMed] [Google Scholar]
  28. Nonaka Y., Fujii S., Yamano T. The semiquinone state of NADPH-adrenodoxin oxidoreductase in the course of anaerobic reduction with NADPH. J Biochem. 1986 Mar;99(3):803–814. doi: 10.1093/oxfordjournals.jbchem.a135540. [DOI] [PubMed] [Google Scholar]
  29. Ost T. W., Miles C. S., Munro A. W., Murdoch J., Reid G. A., Chapman S. K. Phenylalanine 393 exerts thermodynamic control over the heme of flavocytochrome P450 BM3. Biochemistry. 2001 Nov 13;40(45):13421–13429. doi: 10.1021/bi010716m. [DOI] [PubMed] [Google Scholar]
  30. Pedersen J. I., Godager H. K. Purification of NADPH-ferredoxin reductase from rat liver mitochondria. Biochim Biophys Acta. 1978 Jul 7;525(1):28–36. doi: 10.1016/0005-2744(78)90196-1. [DOI] [PubMed] [Google Scholar]
  31. Pikuleva I. A., Mackman R. L., Kagawa N., Waterman M. R., Ortiz de Montellano P. R. Active-site topology of bovine cholesterol side-chain cleavage cytochrome P450 (P450scc) and evidence for interaction of tyrosine 94 with the side chain of cholesterol. Arch Biochem Biophys. 1995 Sep 10;322(1):189–197. doi: 10.1006/abbi.1995.1451. [DOI] [PubMed] [Google Scholar]
  32. Podust L. M., Poulos T. L., Waterman M. R. Crystal structure of cytochrome P450 14alpha -sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3068–3073. doi: 10.1073/pnas.061562898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Strickland S., Palmer G., Massey V. Determination of dissociation constants and specific rate constants of enzyme-substrate (or protein-ligand) interactions from rapid reaction kinetic data. J Biol Chem. 1975 Jun 10;250(11):4048–4052. [PubMed] [Google Scholar]
  34. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  35. Suhara K., Ikeda Y., Takemori S., Katagiri M. The purification and properties of NADPH-adrenodoxin reductase from bovine adrenocortical mitochondria. FEBS Lett. 1972 Nov 15;28(1):45–47. doi: 10.1016/0014-5793(72)80673-2. [DOI] [PubMed] [Google Scholar]
  36. Takeuchi K., Tsubaki M., Futagawa J., Masuya F., Hori H. Adrenodoxin-cytochrome P450scc interaction as revealed by EPR spectroscopy: comparison with the putidaredoxin-cytochrome P450cam system. J Biochem. 2001 Dec;130(6):789–797. doi: 10.1093/oxfordjournals.jbchem.a003050. [DOI] [PubMed] [Google Scholar]
  37. Tew D. G. Inhibition of cytochrome P450 reductase by the diphenyliodonium cation. Kinetic analysis and covalent modifications. Biochemistry. 1993 Sep 28;32(38):10209–10215. doi: 10.1021/bi00089a042. [DOI] [PubMed] [Google Scholar]
  38. Zhang Y., Young D. B. Molecular mechanisms of isoniazid: a drug at the front line of tuberculosis control. Trends Microbiol. 1993 Jun;1(3):109–113. doi: 10.1016/0966-842x(93)90117-a. [DOI] [PubMed] [Google Scholar]
  39. Ziegler G. A., Schulz G. E. Crystal structures of adrenodoxin reductase in complex with NADP+ and NADPH suggesting a mechanism for the electron transfer of an enzyme family. Biochemistry. 2000 Sep 12;39(36):10986–10995. doi: 10.1021/bi000079k. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES