Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 1;372(Pt 2):543–554. doi: 10.1042/BJ20021537

Identification of regions involved in the binding of alpha-bungarotoxin to the human alpha7 neuronal nicotinic acetylcholine receptor using synthetic peptides.

Martha Marinou 1, Socrates J Tzartos 1
PMCID: PMC1223412  PMID: 12614199

Abstract

The neuronal alpha7 nicotinic acetylcholine receptor (AChR) binds the neurotoxin alpha-bungarotoxin (alpha-Bgt). Fine mapping of the alpha-Bgt-binding site on the human alpha7 AChR was performed using synthetic peptides covering the entire extracellular domain of the human alpha7 subunit (residues 1-206). Screening of these peptides for (125)I-alpha-Bgt binding resulted in the identification of at least two toxin-binding sites, one at residues 186-197, which exhibited the best (125)I-alpha-Bgt binding, and one at residues 159-165, with weak toxin-binding capacity; these correspond, respectively, to loops C and IV of the agonist-binding site. Toxin binding to the alpha7(186-197) peptide was almost completely inhibited by unlabelled alpha-Bgt or d -tubocurarine. Alanine substitutions within the sequence 186-198 revealed a predominant contribution of aromatic and negatively charged residues to the binding site. This sequence is homologous to the alpha-Bgt binding site of the alpha1 subunit (residues 188-200 in Torpedo AChR). In competition experiments, the soluble peptides alpha7(186-197) and Torpedo alpha1(184-200) inhibited the binding of (125)I-alpha-Bgt to the immobilized alpha7(186-197) peptide, to native Torpedo AChR, and to the extracellular domain of the human alpha1 subunit. These results suggest that the toxin-binding sites of the neuronal alpha7 and muscle-type AChRs bind to identical or overlapping sites on the alpha-Bgt molecule. In support of this, when synthetic alpha-Bgt peptides were tested for binding to the recombinant extracellular domains of the human alpha7 and alpha1 subunits, and to native Torpedo and alpha7 AChR, the results indicated that alpha-Bgt interacts with both neuronal and muscle-type AChRs through its central loop II and C-terminal tail.

Full Text

The Full Text of this article is available as a PDF (302.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antil-Delbeke S., Gaillard C., Tamiya T., Corringer P. J., Changeux J. P., Servent D., Ménez A. Molecular determinants by which a long chain toxin from snake venom interacts with the neuronal alpha 7-nicotinic acetylcholine receptor. J Biol Chem. 2000 Sep 22;275(38):29594–29601. doi: 10.1074/jbc.M909746199. [DOI] [PubMed] [Google Scholar]
  2. Antil S., Servent D., Ménez A. Variability among the sites by which curaremimetic toxins bind to torpedo acetylcholine receptor, as revealed by identification of the functional residues of alpha-cobratoxin. J Biol Chem. 1999 Dec 3;274(49):34851–34858. doi: 10.1074/jbc.274.49.34851. [DOI] [PubMed] [Google Scholar]
  3. Arias H. R. Topology of ligand binding sites on the nicotinic acetylcholine receptor. Brain Res Brain Res Rev. 1997 Oct;25(2):133–191. doi: 10.1016/s0165-0173(97)00020-9. [DOI] [PubMed] [Google Scholar]
  4. Atassi M. Z., McDaniel C. S., Manshouri T. Mapping by synthetic peptides of the binding sites for acetylcholine receptor on alpha-bungarotoxin. J Protein Chem. 1988 Oct;7(5):655–666. doi: 10.1007/BF01024881. [DOI] [PubMed] [Google Scholar]
  5. Basus V. J., Billeter M., Love R. A., Stroud R. M., Kuntz I. D. Structural studies of alpha-bungarotoxin. 1. Sequence-specific 1H NMR resonance assignments. Biochemistry. 1988 Apr 19;27(8):2763–2771. doi: 10.1021/bi00408a016. [DOI] [PubMed] [Google Scholar]
  6. Basus V. J., Song G., Hawrot E. NMR solution structure of an alpha-bungarotoxin/nicotinic receptor peptide complex. Biochemistry. 1993 Nov 23;32(46):12290–12298. doi: 10.1021/bi00097a004. [DOI] [PubMed] [Google Scholar]
  7. Brejc K., van Dijk W. J., Klaassen R. V., Schuurmans M., van Der Oost J., Smit A. B., Sixma T. K. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature. 2001 May 17;411(6835):269–276. doi: 10.1038/35077011. [DOI] [PubMed] [Google Scholar]
  8. Butt Christopher M., Hutton Scott R., Marks Michael J., Collins Allan C. Bovine serum albumin enhances nicotinic acetylcholine receptor function in mouse thalamic synaptosomes. J Neurochem. 2002 Oct;83(1):48–56. doi: 10.1046/j.1471-4159.2002.01135.x. [DOI] [PubMed] [Google Scholar]
  9. Clementi F., Fornasari D., Gotti C. Neuronal nicotinic receptors, important new players in brain function. Eur J Pharmacol. 2000 Mar 30;393(1-3):3–10. doi: 10.1016/s0014-2999(00)00066-2. [DOI] [PubMed] [Google Scholar]
  10. Conroy William G., Liu Qing-Song, Nai Qiang, Margiotta Joseph F., Berg Darwin K. Potentiation of alpha7-containing nicotinic acetylcholine receptors by select albumins. Mol Pharmacol. 2003 Feb;63(2):419–428. doi: 10.1124/mol.63.2.419. [DOI] [PubMed] [Google Scholar]
  11. Conti-Tronconi B. M., Tang F., Diethelm B. M., Spencer S. R., Reinhardt-Maelicke S., Maelicke A. Mapping of a cholinergic binding site by means of synthetic peptides, monoclonal antibodies, and alpha-bungarotoxin. Biochemistry. 1990 Jul 3;29(26):6221–6230. doi: 10.1021/bi00478a016. [DOI] [PubMed] [Google Scholar]
  12. Corringer P. J., Galzi J. L., Eiselé J. L., Bertrand S., Changeux J. P., Bertrand D. Identification of a new component of the agonist binding site of the nicotinic alpha 7 homooligomeric receptor. J Biol Chem. 1995 May 19;270(20):11749–11752. doi: 10.1074/jbc.270.20.11749. [DOI] [PubMed] [Google Scholar]
  13. Couturier S., Bertrand D., Matter J. M., Hernandez M. C., Bertrand S., Millar N., Valera S., Barkas T., Ballivet M. A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX. Neuron. 1990 Dec;5(6):847–856. doi: 10.1016/0896-6273(90)90344-f. [DOI] [PubMed] [Google Scholar]
  14. Fischer M., Corringer P. J., Schott K., Bacher A., Changeux J. P. A method for soluble overexpression of the alpha7 nicotinic acetylcholine receptor extracellular domain. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3567–3570. doi: 10.1073/pnas.041594798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fruchart-Gaillard Carole, Gilquin Bernard, Antil-Delbeke Stephanie, Le Novère Nicolas, Tamiya Toru, Corringer Pierre-Jean, Changeux Jean-Pierre, Ménez André, Servent Denis. Experimentally based model of a complex between a snake toxin and the alpha 7 nicotinic receptor. Proc Natl Acad Sci U S A. 2002 Feb 26;99(5):3216–3221. doi: 10.1073/pnas.042699899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Galzi J. L., Bertrand D., Devillers-Thiéry A., Revah F., Bertrand S., Changeux J. P. Functional significance of aromatic amino acids from three peptide loops of the alpha 7 neuronal nicotinic receptor site investigated by site-directed mutagenesis. FEBS Lett. 1991 Dec 9;294(3):198–202. doi: 10.1016/0014-5793(91)80668-s. [DOI] [PubMed] [Google Scholar]
  17. Geysen H. M., Meloen R. H., Barteling S. J. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3998–4002. doi: 10.1073/pnas.81.13.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gotti C., Frigerio F., Bolognesi M., Longhi R., Racchetti G., Clementi F. Nicotinic acetylcholine receptor: a structural model for alpha-subunit peptide 188-201, the putative binding site for cholinergic agents. FEBS Lett. 1988 Feb 8;228(1):118–122. doi: 10.1016/0014-5793(88)80598-2. [DOI] [PubMed] [Google Scholar]
  19. Karlin A., Akabas M. H. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron. 1995 Dec;15(6):1231–1244. doi: 10.1016/0896-6273(95)90004-7. [DOI] [PubMed] [Google Scholar]
  20. Kempsill F. E., Covernton P. J., Whiting P. J., Connolly J. G. Agonist activation and alpha-bungarotoxin inhibition of wild type and mutant alpha7 nicotinic acetylcholine receptors. Eur J Pharmacol. 1999 Nov 3;383(3):347–359. doi: 10.1016/s0014-2999(99)00646-9. [DOI] [PubMed] [Google Scholar]
  21. Kistler J., Stroud R. M., Klymkowsky M. W., Lalancette R. A., Fairclough R. H. Structure and function of an acetylcholine receptor. Biophys J. 1982 Jan;37(1):371–383. doi: 10.1016/S0006-3495(82)84685-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kosen P. A., Finer-Moore J., McCarthy M. P., Basus V. J. Structural studies of alpha-bungarotoxin. 3. Corrections in the primary sequence and X-ray structure and characterization of an isotoxic alpha-bungarotoxin. Biochemistry. 1988 Apr 19;27(8):2775–2781. doi: 10.1021/bi00408a018. [DOI] [PubMed] [Google Scholar]
  23. Le Novère N., Changeux J. P. Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J Mol Evol. 1995 Feb;40(2):155–172. doi: 10.1007/BF00167110. [DOI] [PubMed] [Google Scholar]
  24. Le Novère N., Corringer P. J., Changeux J. P. Improved secondary structure predictions for a nicotinic receptor subunit: incorporation of solvent accessibility and experimental data into a two-dimensional representation. Biophys J. 1999 May;76(5):2329–2345. doi: 10.1016/S0006-3495(99)77390-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lentz T. L. Differential binding of nicotine and alpha-bungarotoxin to residues 173-204 of the nicotinic acetylcholine receptor alpha 1 subunit. Biochemistry. 1995 Jan 31;34(4):1316–1322. doi: 10.1021/bi00004a026. [DOI] [PubMed] [Google Scholar]
  26. Lentz T. L., Hawrot E., Wilson P. T. Synthetic peptides corresponding to sequences of snake venom neurotoxins and rabies virus glycoprotein bind to the nicotinic acetylcholine receptor. Proteins. 1987;2(4):298–307. doi: 10.1002/prot.340020406. [DOI] [PubMed] [Google Scholar]
  27. Levandoski M. M., Lin Y., Moise L., McLaughlin J. T., Cooper E., Hawrot E. Chimeric analysis of a neuronal nicotinic acetylcholine receptor reveals amino acids conferring sensitivity to alpha-bungarotoxin. J Biol Chem. 1999 Sep 10;274(37):26113–26119. doi: 10.1074/jbc.274.37.26113. [DOI] [PubMed] [Google Scholar]
  28. Lindstrom J., Einarson B., Tzartos S. Production and assay of antibodies to acetylcholine receptors. Methods Enzymol. 1981;74(Pt 100):432–460. doi: 10.1016/0076-6879(81)74031-x. [DOI] [PubMed] [Google Scholar]
  29. Lindstrom J. Nicotinic acetylcholine receptors in health and disease. Mol Neurobiol. 1997 Oct;15(2):193–222. doi: 10.1007/BF02740634. [DOI] [PubMed] [Google Scholar]
  30. Love R. A., Stroud R. M. The crystal structure of alpha-bungarotoxin at 2.5 A resolution: relation to solution structure and binding to acetylcholine receptor. Protein Eng. 1986 Oct-Nov;1(1):37–46. doi: 10.1093/protein/1.1.37. [DOI] [PubMed] [Google Scholar]
  31. McConahey P. J., Dixon F. J. Radioiodination of proteins by the use of the chloramine-T method. Methods Enzymol. 1980;70(A):210–213. doi: 10.1016/s0076-6879(80)70050-2. [DOI] [PubMed] [Google Scholar]
  32. McLane K. E., Wu X. D., Schoepfer R., Lindstrom J. M., Conti-Tronconi B. M. Identification of sequence segments forming the alpha-bungarotoxin binding sites on two nicotinic acetylcholine receptor alpha subunits from the avian brain. J Biol Chem. 1991 Aug 15;266(23):15230–15239. [PubMed] [Google Scholar]
  33. McLane K. E., Wu X., Conti-Tronconi B. M. An alpha-bungarotoxin-binding sequence on the Torpedo nicotinic acetylcholine receptor alpha-subunit: conservative amino acid substitutions reveal side-chain specific interactions. Biochemistry. 1994 Mar 8;33(9):2576–2585. doi: 10.1021/bi00175a029. [DOI] [PubMed] [Google Scholar]
  34. Moise Leonard, Piserchio Andrea, Basus Vladimir J., Hawrot Edward. NMR structural analysis of alpha-bungarotoxin and its complex with the principal alpha-neurotoxin-binding sequence on the alpha 7 subunit of a neuronal nicotinic acetylcholine receptor. J Biol Chem. 2002 Jan 14;277(14):12406–12417. doi: 10.1074/jbc.M110320200. [DOI] [PubMed] [Google Scholar]
  35. Neumann D., Barchan D., Safran A., Gershoni J. M., Fuchs S. Mapping of the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor. Proc Natl Acad Sci U S A. 1986 May;83(9):3008–3011. doi: 10.1073/pnas.83.9.3008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Psaridi-Linardaki Loukia, Mamalaki Avgi, Remoundos Michael, Tzartos Socrates J. Expression of soluble ligand- and antibody-binding extracellular domain of human muscle acetylcholine receptor alpha subunit in yeast Pichia pastoris. Role of glycosylation in alpha-bungarotoxin binding. J Biol Chem. 2002 May 15;277(30):26980–26986. doi: 10.1074/jbc.M110731200. [DOI] [PubMed] [Google Scholar]
  37. Quiram P. A., Jones J. J., Sine S. M. Pairwise interactions between neuronal alpha7 acetylcholine receptors and alpha-conotoxin ImI. J Biol Chem. 1999 Jul 9;274(28):19517–19524. doi: 10.1074/jbc.274.28.19517. [DOI] [PubMed] [Google Scholar]
  38. Rosenthal J. A., Levandoski M. M., Chang B., Potts J. F., Shi Q. L., Hawrot E. The functional role of positively charged amino acid side chains in alpha-bungarotoxin revealed by site-directed mutagenesis of a His-tagged recombinant alpha-bungarotoxin. Biochemistry. 1999 Jun 15;38(24):7847–7855. doi: 10.1021/bi990045g. [DOI] [PubMed] [Google Scholar]
  39. Ruan K. H., Spurlino J., Quiocho F. A., Atassi M. Z. Acetylcholine receptor-alpha-bungarotoxin interactions: determination of the region-to-region contacts by peptide-peptide interactions and molecular modeling of the receptor cavity. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6156–6160. doi: 10.1073/pnas.87.16.6156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sargent P. B. The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci. 1993;16:403–443. doi: 10.1146/annurev.ne.16.030193.002155. [DOI] [PubMed] [Google Scholar]
  41. Servent D., Antil-Delbeke S., Gaillard C., Corringer P. J., Changeux J. P., Ménez A. Molecular characterization of the specificity of interactions of various neurotoxins on two distinct nicotinic acetylcholine receptors. Eur J Pharmacol. 2000 Mar 30;393(1-3):197–204. doi: 10.1016/s0014-2999(00)00095-9. [DOI] [PubMed] [Google Scholar]
  42. Servent D., Winckler-Dietrich V., Hu H. Y., Kessler P., Drevet P., Bertrand D., Ménez A. Only snake curaremimetic toxins with a fifth disulfide bond have high affinity for the neuronal alpha7 nicotinic receptor. J Biol Chem. 1997 Sep 26;272(39):24279–24286. doi: 10.1074/jbc.272.39.24279. [DOI] [PubMed] [Google Scholar]
  43. Tsigelny I., Sugiyama N., Sine S. M., Taylor P. A model of the nicotinic receptor extracellular domain based on sequence identity and residue location. Biophys J. 1997 Jul;73(1):52–66. doi: 10.1016/S0006-3495(97)78047-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tzartos S. J., Remoundos M. S. Fine localization of the major alpha-bungarotoxin binding site to residues alpha 189-195 of the Torpedo acetylcholine receptor. Residues 189, 190, and 195 are indispensable for binding. J Biol Chem. 1990 Dec 15;265(35):21462–21467. [PubMed] [Google Scholar]
  45. Wilson P. T., Hawrot E., Lentz T. L. Distribution of alpha-bungarotoxin binding sites over residues 173-204 of the alpha subunit of the acetylcholine receptor. Mol Pharmacol. 1988 Nov;34(5):643–650. [PubMed] [Google Scholar]
  46. Wilson P. T., Lentz T. L. Binding of alpha-bungarotoxin to synthetic peptides corresponding to residues 173-204 of the alpha subunit of Torpedo, calf, and human acetylcholine receptor and restoration of high-affinity binding by sodium dodecyl sulfate. Biochemistry. 1988 Sep 6;27(18):6667–6674. doi: 10.1021/bi00418a004. [DOI] [PubMed] [Google Scholar]
  47. Wilson P. T., Lentz T. L., Hawrot E. Determination of the primary amino acid sequence specifying the alpha-bungarotoxin binding site on the alpha subunit of the acetylcholine receptor from Torpedo californica. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8790–8794. doi: 10.1073/pnas.82.24.8790. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES