Abstract
A novel class of proteinaceous inhibitors exhibiting specificity towards microbial xylanases has recently been discovered in cereals. The three-dimensional structure of xylanase inhibitor protein I (XIP-I) from wheat (Triticum aestivum, var. Soisson) was determined by X-ray crystallography at 1.8 A (1 A=0.1 nm) resolution. The inhibitor possesses a (beta/alpha)(8) barrel fold and has structural features typical of glycoside hydrolase family 18, namely two consensus regions, approximately corresponding to the third and fourth barrel strands, and two non-proline cis -peptide bonds, Ser(36)-Phe and Trp(256)-Asp (in XIP-I numbering). However, detailed structural analysis of XIP-I revealed several differences in the region homologous with the active site of chitinases. The catalytic glutamic acid residue of family 18 chitinases [Glu(127) in hevamine, a chitinase/lysozyme from the rubber tree (Hevea brasiliensis)] is conserved in the structure of the inhibitor (Glu(128)), but its side chain is fully engaged in salt bridges with two neighbouring arginine residues. Gly(81), located in subsite -1 of hevamine, where the reaction intermediate is formed, is replaced by Tyr(80) in XIP-I. The tyrosine side chain fills the subsite area and makes a strong hydrogen bond with the side chain of Glu(190) located at the opposite side of the cleft, preventing access of the substrate to the catalytic glutamic acid. The structural differences in the inhibitor cleft structure probably account for the lack of activity of XIP-I towards chitin.
Full Text
The Full Text of this article is available as a PDF (377.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barton G. J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 1993 Jan;6(1):37–40. doi: 10.1093/protein/6.1.37. [DOI] [PubMed] [Google Scholar]
- Bokma Evert, Rozeboom Henriëtte J., Sibbald Mark, Dijkstra Bauke W., Beintema Jaap J. Expression and characterization of active site mutants of hevamine, a chitinase from the rubber tree Hevea brasiliensis. Eur J Biochem. 2002 Feb;269(3):893–901. doi: 10.1046/j.0014-2956.2001.02721.x. [DOI] [PubMed] [Google Scholar]
- Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
- Davies G. J., Wilson K. S., Henrissat B. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J. 1997 Jan 15;321(Pt 2):557–559. doi: 10.1042/bj3210557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elliott Giles O., Hughes Richard K., Juge Nathalie, Kroon Paul A., Williamson Gary. Functional identification of the cDNA coding for a wheat endo-1,4-beta-D-xylanase inhibitor. FEBS Lett. 2002 May 22;519(1-3):66–70. doi: 10.1016/s0014-5793(02)02710-2. [DOI] [PubMed] [Google Scholar]
- Flatman Ruth, McLauchlan W. Russell, Juge Nathalie, Furniss Caroline, Berrin Jean-Guy, Hughes Richard K., Manzanares Paloma, Ladbury John E., O'Brien Ronan, Williamson Gary. Interactions defining the specificity between fungal xylanases and the xylanase-inhibiting protein XIP-I from wheat. Biochem J. 2002 Aug 1;365(Pt 3):773–781. doi: 10.1042/BJ20020168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furniss Caroline S. M., Belshaw Nigel J., Alcocer Marcos J. C., Williamson Gary, Elliott Giles O., Gebruers Kurt, Haigh Nigel P., Fish Neville M., Kroon Paul A. A family 11 xylanase from Penicillium funiculosum is strongly inhibited by three wheat xylanase inhibitors. Biochim Biophys Acta. 2002 Jul 29;1598(1-2):24–29. doi: 10.1016/s0167-4838(02)00366-7. [DOI] [PubMed] [Google Scholar]
- Gebruers K., Debyser W., Goesaert H., Proost P., Van Damme J, Delcour J. A. Triticum aestivum L. endoxylanase inhibitor (TAXI) consists of two inhibitors, TAXI I and TAXI II, with different specificities. Biochem J. 2001 Jan 15;353(Pt 2):239–244. doi: 10.1042/0264-6021:3530239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hennig M., Jansonius J. N., Terwisscha van Scheltinga A. C., Dijkstra B. W., Schlesier B. Crystal structure of concanavalin B at 1.65 A resolution. An "inactivated" chitinase from seeds of Canavalia ensiformis. J Mol Biol. 1995 Nov 24;254(2):237–246. doi: 10.1006/jmbi.1995.0614. [DOI] [PubMed] [Google Scholar]
- Hennig M., Pfeffer-Hennig S., Dauter Z., Wilson K. S., Schlesier B., Nong V. H. Crystal structure of narbonin at 1.8 A resolution. Acta Crystallogr D Biol Crystallogr. 1995 Mar 1;51(Pt 2):177–189. doi: 10.1107/S0907444994009807. [DOI] [PubMed] [Google Scholar]
- Laskowski R. A., Moss D. S., Thornton J. M. Main-chain bond lengths and bond angles in protein structures. J Mol Biol. 1993 Jun 20;231(4):1049–1067. doi: 10.1006/jmbi.1993.1351. [DOI] [PubMed] [Google Scholar]
- McLauchlan W. R., Garcia-Conesa M. T., Williamson G., Roza M., Ravestein P., Maat J. A novel class of protein from wheat which inhibits xylanases. Biochem J. 1999 Mar 1;338(Pt 2):441–446. [PMC free article] [PubMed] [Google Scholar]
- Nong V. H., Schlesier B., Bassüner R., Repik A., Horstmann C., Müntz K. Narbonin, a novel 2S protein from Vicia narbonensis L. seeds: cDNA, gene structure and developmentally regulated formation. Plant Mol Biol. 1995 Apr;28(1):61–72. doi: 10.1007/BF00042038. [DOI] [PubMed] [Google Scholar]
- Ramachandran G. N., Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem. 1968;23:283–438. doi: 10.1016/s0065-3233(08)60402-7. [DOI] [PubMed] [Google Scholar]
- Tahir Tariq A., Berrin Jean-Guy, Flatman Ruth, Roussel Alain, Roepstorff Peter, Williamson Gary, Juge Nathalie. Specific characterization of substrate and inhibitor binding sites of a glycosyl hydrolase family 11 xylanase from Aspergillus niger. J Biol Chem. 2002 Aug 30;277(46):44035–44043. doi: 10.1074/jbc.M205657200. [DOI] [PubMed] [Google Scholar]
- Terwisscha van Scheltinga A. C., Armand S., Kalk K. H., Isogai A., Henrissat B., Dijkstra B. W. Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis. Biochemistry. 1995 Dec 5;34(48):15619–15623. doi: 10.1021/bi00048a003. [DOI] [PubMed] [Google Scholar]
- Terwisscha van Scheltinga A. C., Hennig M., Dijkstra B. W. The 1.8 A resolution structure of hevamine, a plant chitinase/lysozyme, and analysis of the conserved sequence and structure motifs of glycosyl hydrolase family 18. J Mol Biol. 1996 Sep 20;262(2):243–257. doi: 10.1006/jmbi.1996.0510. [DOI] [PubMed] [Google Scholar]
- Terwisscha van Scheltinga A. C., Kalk K. H., Beintema J. J., Dijkstra B. W. Crystal structures of hevamine, a plant defence protein with chitinase and lysozyme activity, and its complex with an inhibitor. Structure. 1994 Dec 15;2(12):1181–1189. doi: 10.1016/s0969-2126(94)00120-0. [DOI] [PubMed] [Google Scholar]
- Törrönen A., Harkki A., Rouvinen J. Three-dimensional structure of endo-1,4-beta-xylanase II from Trichoderma reesei: two conformational states in the active site. EMBO J. 1994 Jun 1;13(11):2493–2501. doi: 10.1002/j.1460-2075.1994.tb06536.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White A., Withers S. G., Gilkes N. R., Rose D. R. Crystal structure of the catalytic domain of the beta-1,4-glycanase cex from Cellulomonas fimi. Biochemistry. 1994 Oct 25;33(42):12546–12552. doi: 10.1021/bi00208a003. [DOI] [PubMed] [Google Scholar]