Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 1;372(Pt 2):577–585. doi: 10.1042/BJ20021377

Thermotoga neapolitana adenylate kinase is highly active at 30 degrees C.

Claire Vieille 1, Harini Krishnamurthy 1, Hyung-Hwan Hyun 1, Alexei Savchenko 1, Honggao Yan 1, J Gregory Zeikus 1
PMCID: PMC1223421  PMID: 12625835

Abstract

The adenylate kinase (AK) gene from Thermotoga neapolitana, a hyperthermophilic bacterium, was cloned and overexpressed in Escherichia coli, and the recombinant enzyme was biochemically characterized. The T. neapolitana AK (TNAK) sequence indicates that this enzyme belongs to the long bacterial AKs. TNAK contains the four cysteine residues that bind Zn(2+) in all Gram-positive AKs and in a few other Zn(2+)-containing bacterial AKs. Atomic emission spectroscopy and titration data indicate a content of 1 mol of Zn(2+)/mol of recombinant TNAK. The EDTA-treated enzyme has a melting temperature (T (m)=93.5 degrees C) 6.2 degrees C below that of the holoenzyme (99.7 degrees C), identifying Zn(2+) as a stabilizing feature in TNAK. TNAK is a monomeric enzyme with a molecular mass of approx. 25 kDa. TNAK displays V (max) and K (m) values at 30 degrees C identical with those of the E. coli AK at 30 degrees C, and displays very high activity at 80 degrees C, with a specific activity above 8000 units/mg. The unusually high activity of TNAK at 30 degrees C makes it an interesting model to test the role of enzyme flexibility in activity.

Full Text

The Full Text of this article is available as a PDF (251.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaucamp N., Schurig H., Jaenicke R. The PGK-TIM fusion protein from Thermotoga maritima and its constituent parts are intrinsically stable and fold independently. Biol Chem. 1997 Jul;378(7):679–685. doi: 10.1515/bchm.1997.378.7.679. [DOI] [PubMed] [Google Scholar]
  2. Belkin S., Wirsen C. O., Jannasch H. W. A new sulfur-reducing, extremely thermophilic eubacterium from a submarine thermal vent. Appl Environ Microbiol. 1986 Jun;51(6):1180–1185. doi: 10.1128/aem.51.6.1180-1185.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berry M. B., Phillips G. N., Jr Crystal structures of Bacillus stearothermophilus adenylate kinase with bound Ap5A, Mg2+ Ap5A, and Mn2+ Ap5A reveal an intermediate lid position and six coordinate octahedral geometry for bound Mg2+ and Mn2+. Proteins. 1998 Aug 15;32(3):276–288. doi: 10.1002/(sici)1097-0134(19980815)32:3<276::aid-prot3>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  4. Burdette DS, Tchernajencko V, V, Zeikus JG. Effect of thermal and chemical denaturants on Thermoanaerobacter ethanolicus secondary-alcohol dehydrogenase stability and activity. Enzyme Microb Technol. 2000 Jul 1;27(1-2):11–18. doi: 10.1016/s0141-0229(00)00192-7. [DOI] [PubMed] [Google Scholar]
  5. D'Auria S., Herman P., Lakowicz J. R., Tanfani F., Bertoli E., Manco G., Rossi M. The esterase from the thermophilic eubacterium Bacillus acidocaldarius: structural-functional relationship and comparison with the esterase from the hyperthermophilic archaeon Archaeoglobus fulgidus. Proteins. 2000 Aug 15;40(3):473–481. doi: 10.1002/1097-0134(20000815)40:3&#x0003c;473::aid-prot140&#x0003e;3.0.co;2-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dams T., Böhm G., Auerbach G., Bader G., Schurig H., Jaenicke R. Homo-dimeric recombinant dihydrofolate reductase from Thermotoga maritima shows extreme intrinsic stability. Biol Chem. 1998 Mar;379(3):367–371. [PubMed] [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dong G., Vieille C., Savchenko A., Zeikus J. G. Cloning, sequencing, and expression of the gene encoding extracellular alpha-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl Environ Microbiol. 1997 Sep;63(9):3569–3576. doi: 10.1128/aem.63.9.3569-3576.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferber D. M., Haney P. J., Berk H., Lynn D., Konisky J. The adenylate kinase genes of M. voltae, M. thermolithotrophicus, M. jannaschii, and M. igneus define a new family of adenylate kinases. Gene. 1997 Feb 7;185(2):239–244. doi: 10.1016/s0378-1119(96)00651-8. [DOI] [PubMed] [Google Scholar]
  10. Gilles A. M., Glaser P., Perrier V., Meier A., Longin R., Sebald M., Maignan L., Pistotnik E., Bârzu O. Zinc, a structural component of adenylate kinases from gram-positive bacteria. J Bacteriol. 1994 Jan;176(2):520–523. doi: 10.1128/jb.176.2.520-523.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Glaser M., Nulty W., Vagelos P. R. Role of adenylate kinase in the regulation of macromolecular biosynthesis in a putative mutant of Escherichia coli defective in membrane phospholipid biosynthesis. J Bacteriol. 1975 Jul;123(1):128–136. doi: 10.1128/jb.123.1.128-136.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glaser P., Presecan E., Delepierre M., Surewicz W. K., Mantsch H. H., Bârzu O., Gilles A. M. Zinc, a novel structural element found in the family of bacterial adenylate kinases. Biochemistry. 1992 Mar 31;31(12):3038–3043. doi: 10.1021/bi00127a002. [DOI] [PubMed] [Google Scholar]
  13. Goldberg J. B., Ohman D. E. Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J Bacteriol. 1984 Jun;158(3):1115–1121. doi: 10.1128/jb.158.3.1115-1121.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haase G. H., Brune M., Reinstein J., Pai E. F., Pingoud A., Wittinghofer A. Adenylate kinases from thermosensitive Escherichia coli strains. J Mol Biol. 1989 May 5;207(1):151–162. doi: 10.1016/0022-2836(89)90446-4. [DOI] [PubMed] [Google Scholar]
  15. Heil A., Müller G., Noda L., Pinder T., Schirmer H., Schirmer I., von Zabern I. The amino-acid sequence of sarcine adenylate kinase from skeletal muscle. Eur J Biochem. 1974 Mar 15;43(1):131–144. doi: 10.1111/j.1432-1033.1974.tb03393.x. [DOI] [PubMed] [Google Scholar]
  16. Hess D., Krüger K., Knappik A., Palm P., Hensel R. Dimeric 3-phosphoglycerate kinases from hyperthermophilic Archaea. Cloning, sequencing and expression of the 3-phosphoglycerate kinase gene of Pyrococcus woesei in Escherichia coli and characterization of the protein. Structural and functional comparison with the 3-phosphoglycerate kinase of Methanothermus fervidus. Eur J Biochem. 1995 Oct 1;233(1):227–237. doi: 10.1111/j.1432-1033.1995.227_1.x. [DOI] [PubMed] [Google Scholar]
  17. Hunt J. B., Neece S. H., Ginsburg A. The use of 4-(2-pyridylazo)resorcinol in studies of zinc release from Escherichia coli aspartate transcarbamoylase. Anal Biochem. 1985 Apr;146(1):150–157. doi: 10.1016/0003-2697(85)90409-9. [DOI] [PubMed] [Google Scholar]
  18. Ichikawa J. K., Clarke S. A highly active protein repair enzyme from an extreme thermophile: the L-isoaspartyl methyltransferase from Thermotoga maritima. Arch Biochem Biophys. 1998 Oct 15;358(2):222–231. doi: 10.1006/abbi.1998.0830. [DOI] [PubMed] [Google Scholar]
  19. Jaenicke R. Protein stability and molecular adaptation to extreme conditions. Eur J Biochem. 1991 Dec 18;202(3):715–728. doi: 10.1111/j.1432-1033.1991.tb16426.x. [DOI] [PubMed] [Google Scholar]
  20. Jaenicke R. Protein stability and protein folding. Ciba Found Symp. 1991;161:206–221. [PubMed] [Google Scholar]
  21. Kath T., Schmid R., Schäfer G. Identification, cloning, and expression of the gene for adenylate kinase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Arch Biochem Biophys. 1993 Dec;307(2):405–410. doi: 10.1006/abbi.1993.1607. [DOI] [PubMed] [Google Scholar]
  22. Klenk H. P., Clayton R. A., Tomb J. F., White O., Nelson K. E., Ketchum K. A., Dodson R. J., Gwinn M., Hickey E. K., Peterson J. D. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature. 1997 Nov 27;390(6658):364–370. doi: 10.1038/37052. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Lazaridis T., Lee I., Karplus M. Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin. Protein Sci. 1997 Dec;6(12):2589–2605. doi: 10.1002/pro.5560061211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Manco G., Giosuè E., D'Auria S., Herman P., Carrea G., Rossi M. Cloning, overexpression, and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone-sensitive lipase subfamily from the archaeon Archaeoglobus fulgidus. Arch Biochem Biophys. 2000 Jan 1;373(1):182–192. doi: 10.1006/abbi.1999.1497. [DOI] [PubMed] [Google Scholar]
  26. Merz A., Knöchel T., Jansonius J. N., Kirschner K. The hyperthermostable indoleglycerol phosphate synthase from Thermotoga maritima is destabilized by mutational disruption of two solvent-exposed salt bridges. J Mol Biol. 1999 May 14;288(4):753–763. doi: 10.1006/jmbi.1999.2709. [DOI] [PubMed] [Google Scholar]
  27. Miura K., Inouye S., Sakai K., Takaoka H., Kishi F., Tabuchi M., Tanaka T., Matsumoto H., Shirai M., Nakazawa T. Cloning and characterization of adenylate kinase from Chlamydia pneumoniae. J Biol Chem. 2001 Jan 23;276(16):13490–13498. doi: 10.1074/jbc.M009461200. [DOI] [PubMed] [Google Scholar]
  28. Munier-Lehmann H., Burlacu-Miron S., Craescu C. T., Mantsch H. H., Schultz C. P. A new subfamily of short bacterial adenylate kinases with the Mycobacterium tuberculosis enzyme as a model: A predictive and experimental study. Proteins. 1999 Aug 1;36(2):238–248. [PubMed] [Google Scholar]
  29. Müller C. W., Schulz G. E. Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 A resolution. A model for a catalytic transition state. J Mol Biol. 1992 Mar 5;224(1):159–177. doi: 10.1016/0022-2836(92)90582-5. [DOI] [PubMed] [Google Scholar]
  30. Nelson K. E., Clayton R. A., Gill S. R., Gwinn M. L., Dodson R. J., Haft D. H., Hickey E. K., Peterson J. D., Nelson W. C., Ketchum K. A. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature. 1999 May 27;399(6734):323–329. doi: 10.1038/20601. [DOI] [PubMed] [Google Scholar]
  31. Perrier V., Burlacu-Miron S., Bourgeois S., Surewicz W. K., Gilles A. M. Genetically engineered zinc-chelating adenylate kinase from Escherichia coli with enhanced thermal stability. J Biol Chem. 1998 Jul 24;273(30):19097–19101. doi: 10.1074/jbc.273.30.19097. [DOI] [PubMed] [Google Scholar]
  32. Perrier V., Burlacu-Miron S., Boussac A., Meier A., Gilles A. M. Metal chelating properties of adenylate kinase from Paracoccus denitrificans. Protein Eng. 1998 Oct;11(10):917–923. doi: 10.1093/protein/11.10.917. [DOI] [PubMed] [Google Scholar]
  33. Perrier V., Surewicz W. K., Glaser P., Martineau L., Craescu C. T., Fabian H., Mantsch H. H., Bârzu O., Gilles A. M. Zinc chelation and structural stability of adenylate kinase from Bacillus subtilis. Biochemistry. 1994 Aug 23;33(33):9960–9967. doi: 10.1021/bi00199a019. [DOI] [PubMed] [Google Scholar]
  34. Reinstein J., Vetter I. R., Schlichting I., Rösch P., Wittinghofer A., Goody R. S. Fluorescence and NMR investigations on the ligand binding properties of adenylate kinases. Biochemistry. 1990 Aug 14;29(32):7440–7450. doi: 10.1021/bi00484a013. [DOI] [PubMed] [Google Scholar]
  35. Rusnak P., Haney P., Konisky J. The adenylate kinases from a mesophilic and three thermophilic methanogenic members of the Archaea. J Bacteriol. 1995 Jun;177(11):2977–2981. doi: 10.1128/jb.177.11.2977-2981.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Savchenko Alexei, Vieille Claire, Kang Suil, Zeikus J. Gregory. Pyrococcus furiosus alpha-amylase is stabilized by calcium and zinc. Biochemistry. 2002 May 14;41(19):6193–6201. doi: 10.1021/bi012106s. [DOI] [PubMed] [Google Scholar]
  37. Sterner R., Kleemann G. R., Szadkowski H., Lustig A., Hennig M., Kirschner K. Phosphoribosyl anthranilate isomerase from Thermotoga maritima is an extremely stable and active homodimer. Protein Sci. 1996 Oct;5(10):2000–2008. doi: 10.1002/pro.5560051006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tagaya M., Yagami T., Noumi T., Futai M., Kishi F., Nakazawa A., Fukui T. Site-directed mutagenesis of Pro-17 located in the glycine-rich region of adenylate kinase. J Biol Chem. 1989 Jan 15;264(2):990–994. [PubMed] [Google Scholar]
  39. Vonrhein C., Bönisch H., Schäfer G., Schulz G. E. The structure of a trimeric archaeal adenylate kinase. J Mol Biol. 1998 Sep 11;282(1):167–179. doi: 10.1006/jmbi.1998.2003. [DOI] [PubMed] [Google Scholar]
  40. Voorhorst W. G., Eggen R. I., Luesink E. J., de Vos W. M. Characterization of the celB gene coding for beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus and its expression and site-directed mutation in Escherichia coli. J Bacteriol. 1995 Dec;177(24):7105–7111. doi: 10.1128/jb.177.24.7105-7111.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wrba A., Schweiger A., Schultes V., Jaenicke R., Závodszky P. Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima. Biochemistry. 1990 Aug 21;29(33):7584–7592. doi: 10.1021/bi00485a007. [DOI] [PubMed] [Google Scholar]
  42. Yan H., Tsai M. D. Nucleoside monophosphate kinases: structure, mechanism, and substrate specificity. Adv Enzymol Relat Areas Mol Biol. 1999;73:103-34, x. doi: 10.1002/9780470123195.ch4. [DOI] [PubMed] [Google Scholar]
  43. Zhang Y. L., Zhou J. M., Tsou C. L. Inactivation precedes conformation change during thermal denaturation of adenylate kinase. Biochim Biophys Acta. 1993 Jun 24;1164(1):61–67. doi: 10.1016/0167-4838(93)90112-5. [DOI] [PubMed] [Google Scholar]
  44. Zhang Y. L., Zhou J. M., Tsou C. L. Sequential unfolding of adenylate kinase during denaturation by guanidine hydrochloride. Biochim Biophys Acta. 1996 Jul 18;1295(2):239–244. doi: 10.1016/0167-4838(96)00044-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES