Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 1;372(Pt 2):473–483. doi: 10.1042/BJ20030225

Antibacterial properties of the sperm-binding proteins and peptides of human epididymis 2 (HE2) family; salt sensitivity, structural dependence and their interaction with outer and cytoplasmic membranes of Escherichia coli.

Suresh Yenugu 1, Katherine G Hamil 1, Charles E Birse 1, Steven M Ruben 1, Frank S French 1, Susan H Hall 1
PMCID: PMC1223422  PMID: 12628001

Abstract

During passage through the epididymis, sperm interact with secreted epididymal proteins that promote maturation, including the acquisition of motility and fertilization competence. Viewed previously as distinct from sperm maturation, host defence capabilities are now recognized functions of the human epididymis 2 (HE2) family of sperm-binding proteins. We analysed the potent dose and time-dependent bactericidal activity of recombinant HE2alpha, HE2beta1 and HE2beta2 and found that the full-length proteins (10 microg/ml or approximately 1 microM) caused more than a 50% decrease in Escherichia coli colony forming units within 15 min. By contrast, human beta-defensin-1, at a similar concentration, required more than 90 min to exhibit similar antibacterial activity. The epididymis-specific lipocalin, LCN6, failed to kill bacteria. Higher concentrations (25-100 microg/ml) of HE2 proteins and a longer duration of treatment resulted in near total inhibition of bacterial growth. The C-terminal peptides of HE2alpha, HEbeta1 and HEbeta2 proteins exhibited antibacterial activity similar to their full-length counterparts, indicating that the antibacterial activity of HE2 proteins resides in these C-terminal regions. Antibacterial activities of HE2 proteins and peptides were slightly inhibited by NaCl concentrations of up to 150 mM, while human beta-defensin-1 activity was nearly eliminated. Reduction and alkylation of disulphide bonds in HE2 proteins and their C-terminal peptides abolished their antibacterial activity. Consistent with the ability to kill bacteria, full-length HE2 proteins and C-terminal peptides caused rapid dose-dependent permeabilization of outer and cytoplasmic E. coli membranes. A much longer exposure time was required for human beta-defensin-1-mediated permeabilization of membranes, suggesting a possible difference in mode of action compared with the HE2 antibacterial peptides.

Full Text

The Full Text of this article is available as a PDF (250.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bals R., Goldman M. J., Wilson J. M. Mouse beta-defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. Infect Immun. 1998 Mar;66(3):1225–1232. doi: 10.1128/iai.66.3.1225-1232.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bastian A., Schäfer H. Human alpha-defensin 1 (HNP-1) inhibits adenoviral infection in vitro. Regul Pept. 2001 Sep 15;101(1-3):157–161. doi: 10.1016/s0167-0115(01)00282-8. [DOI] [PubMed] [Google Scholar]
  3. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bierbaum G., Sahl H. G. Induction of autolysis of staphylococci by the basic peptide antibiotics Pep 5 and nisin and their influence on the activity of autolytic enzymes. Arch Microbiol. 1985 Apr;141(3):249–254. doi: 10.1007/BF00408067. [DOI] [PubMed] [Google Scholar]
  5. Björck L., Grubb A., Kjellén L. Cystatin C, a human proteinase inhibitor, blocks replication of herpes simplex virus. J Virol. 1990 Feb;64(2):941–943. doi: 10.1128/jvi.64.2.941-943.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blankenvoorde M. F., van't Hof W., Walgreen-Weterings E., van Steenbergen T. J., Brand H. S., Veerman E. C., Nieuw Amerongen A. V. Cystatin and cystatin-derived peptides have antibacterial activity against the pathogen Porphyromonas gingivalis. Biol Chem. 1998 Nov;379(11):1371–1375. [PubMed] [Google Scholar]
  7. Choi C. S., Lee I. H., Kim E., Kim S. I., Kim H. R. Antibacterial properties and partial cDNA sequences of cecropin-like antibacterial peptides from the common cutworm, Spodoptera litura. Comp Biochem Physiol C Toxicol Pharmacol. 2000 Mar;125(3):287–297. doi: 10.1016/s0742-8413(99)00117-6. [DOI] [PubMed] [Google Scholar]
  8. Cociancich S., Bulet P., Hetru C., Hoffmann J. A. The inducible antibacterial peptides of insects. Parasitol Today. 1994 Apr;10(4):132–139. doi: 10.1016/0169-4758(94)90260-7. [DOI] [PubMed] [Google Scholar]
  9. Com Emmanuelle, Bourgeon Frédéric, Evrard Bertrand, Ganz Tomas, Colleu Daniel, Jégou Bernard, Pineau Charles. Expression of antimicrobial defensins in the male reproductive tract of rats, mice, and humans. Biol Reprod. 2003 Jan;68(1):95–104. doi: 10.1095/biolreprod.102.005389. [DOI] [PubMed] [Google Scholar]
  10. Daher K. A., Selsted M. E., Lehrer R. I. Direct inactivation of viruses by human granulocyte defensins. J Virol. 1986 Dec;60(3):1068–1074. doi: 10.1128/jvi.60.3.1068-1074.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Falla T. J., Karunaratne D. N., Hancock R. E. Mode of action of the antimicrobial peptide indolicidin. J Biol Chem. 1996 Aug 9;271(32):19298–19303. doi: 10.1074/jbc.271.32.19298. [DOI] [PubMed] [Google Scholar]
  12. Fernandez-Lopez S., Kim H. S., Choi E. C., Delgado M., Granja J. R., Khasanov A., Kraehenbuehl K., Long G., Weinberger D. A., Wilcoxen K. M. Antibacterial agents based on the cyclic D,L-alpha-peptide architecture. Nature. 2001 Jul 26;412(6845):452–455. doi: 10.1038/35086601. [DOI] [PubMed] [Google Scholar]
  13. Fidai S., Farmer S. W., Hancock R. E. Interaction of cationic peptides with bacterial membranes. Methods Mol Biol. 1997;78:187–204. doi: 10.1385/0-89603-408-9:187. [DOI] [PubMed] [Google Scholar]
  14. Friedrich C. L., Moyles D., Beveridge T. J., Hancock R. E. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Chemother. 2000 Aug;44(8):2086–2092. doi: 10.1128/aac.44.8.2086-2092.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Friedrich C., Scott M. G., Karunaratne N., Yan H., Hancock R. E. Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrob Agents Chemother. 1999 Jul;43(7):1542–1548. doi: 10.1128/aac.43.7.1542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fröhlich O., Po C., Murphy T., Young L. G. Multiple promoter and splicing mRNA variants of the epididymis-specific gene EP2. J Androl. 2000 May-Jun;21(3):421–430. [PubMed] [Google Scholar]
  17. Fröhlich O., Po C., Young L. G. Organization of the human gene encoding the epididymis-specific EP2 protein variants and its relationship to defensin genes. Biol Reprod. 2001 Apr;64(4):1072–1079. doi: 10.1095/biolreprod64.4.1072. [DOI] [PubMed] [Google Scholar]
  18. Fujii G., Selsted M. E., Eisenberg D. Defensins promote fusion and lysis of negatively charged membranes. Protein Sci. 1993 Aug;2(8):1301–1312. doi: 10.1002/pro.5560020813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. García J. R., Krause A., Schulz S., Rodríguez-Jiménez F. J., Klüver E., Adermann K., Forssmann U., Frimpong-Boateng A., Bals R., Forssmann W. G. Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J. 2001 Aug;15(10):1819–1821. [PubMed] [Google Scholar]
  20. Goldman M. J., Anderson G. M., Stolzenberg E. D., Kari U. P., Zasloff M., Wilson J. M. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell. 1997 Feb 21;88(4):553–560. doi: 10.1016/s0092-8674(00)81895-4. [DOI] [PubMed] [Google Scholar]
  21. Hall Susan H., Hamil Katherine G., French Frank S. Host defense proteins of the male reproductive tract. J Androl. 2002 Sep-Oct;23(5):585–597. [PubMed] [Google Scholar]
  22. Hamil K. G., Sivashanmugam P., Richardson R. T., Grossman G., Ruben S. M., Mohler J. L., Petrusz P., O'Rand M. G., French F. S., Hall S. H. HE2beta and HE2gamma, new members of an epididymis-specific family of androgen-regulated proteins in the human. Endocrinology. 2000 Mar;141(3):1245–1253. doi: 10.1210/endo.141.3.7389. [DOI] [PubMed] [Google Scholar]
  23. Hamil Katherine G., Liu Qiang, Sivashanmugam P., Yenugu Suresh, Soundararajan Rama, Grossman Gail, Richardson Richard T., Zhang Yong-Lian, O'Rand Michael G., Petrusz Peter. Cystatin 11: a new member of the cystatin type 2 family. Endocrinology. 2002 Jul;143(7):2787–2796. doi: 10.1210/endo.143.7.8925. [DOI] [PubMed] [Google Scholar]
  24. Hiemstra P. S., Maassen R. J., Stolk J., Heinzel-Wieland R., Steffens G. J., Dijkman J. H. Antibacterial activity of antileukoprotease. Infect Immun. 1996 Nov;64(11):4520–4524. doi: 10.1128/iai.64.11.4520-4524.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hoover D. M., Rajashankar K. R., Blumenthal R., Puri A., Oppenheim J. J., Chertov O., Lubkowski J. The structure of human beta-defensin-2 shows evidence of higher order oligomerization. J Biol Chem. 2000 Oct 20;275(42):32911–32918. doi: 10.1074/jbc.M006098200. [DOI] [PubMed] [Google Scholar]
  26. Jin Y. Z., Bannai S., Dacheux F., Dacheux J. L., Okamura N. Direct evidence for the secretion of lactoferrin and its binding to sperm in the porcine epididymis. Mol Reprod Dev. 1997 Aug;47(4):490–496. doi: 10.1002/(SICI)1098-2795(199708)47:4<490::AID-MRD16>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  27. Kirchhoff C., Osterhoff C., Habben I., Ivell R., Kirchloff C. Cloning and analysis of mRNAs expressed specifically in the human epididymis. Int J Androl. 1990 Apr;13(2):155–167. doi: 10.1111/j.1365-2605.1990.tb00972.x. [DOI] [PubMed] [Google Scholar]
  28. Kuzuhara T., Nakajima Y., Matsuyama K., Natori S. Determination of the disulfide array in sapecin, an antibacterial peptide of Sarcophaga peregrina (flesh fly). J Biochem. 1990 Apr;107(4):514–518. doi: 10.1093/oxfordjournals.jbchem.a123077. [DOI] [PubMed] [Google Scholar]
  29. Larrick J. W., Hirata M., Balint R. F., Lee J., Zhong J., Wright S. C. Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun. 1995 Apr;63(4):1291–1297. doi: 10.1128/iai.63.4.1291-1297.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lauth Xavier, Shike Hiroko, Burns Jane C., Westerman Mark E., Ostland Vaughn E., Carlberg James M., Van Olst Jon C., Nizet Victor, Taylor Steven W., Shimizu Chisato. Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass. J Biol Chem. 2001 Dec 5;277(7):5030–5039. doi: 10.1074/jbc.M109173200. [DOI] [PubMed] [Google Scholar]
  31. Lehrer R. I., Barton A., Daher K. A., Harwig S. S., Ganz T., Selsted M. E. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest. 1989 Aug;84(2):553–561. doi: 10.1172/JCI114198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lehrer Robert I., Ganz Tomas. Defensins of vertebrate animals. Curr Opin Immunol. 2002 Feb;14(1):96–102. doi: 10.1016/s0952-7915(01)00303-x. [DOI] [PubMed] [Google Scholar]
  33. Li P., Chan H. C., He B., So S. C., Chung Y. W., Shang Q., Zhang Y. D., Zhang Y. L. An antimicrobial peptide gene found in the male reproductive system of rats. Science. 2001 Mar 2;291(5509):1783–1785. doi: 10.1126/science.1056545. [DOI] [PubMed] [Google Scholar]
  34. Liu Q., Hamil K. G., Sivashanmugam P., Grossman G., Soundararajan R., Rao A. J., Richardson R. T., Zhang Y. L., O'Rand M. G., Petrusz P. Primate epididymis-specific proteins: characterization of ESC42, a novel protein containing a trefoil-like motif in monkey and human. Endocrinology. 2001 Oct;142(10):4529–4539. doi: 10.1210/endo.142.10.8422. [DOI] [PubMed] [Google Scholar]
  35. Loh B., Grant C., Hancock R. E. Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1984 Oct;26(4):546–551. doi: 10.1128/aac.26.4.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Malm J., Sørensen O., Persson T., Frohm-Nilsson M., Johansson B., Bjartell A., Lilja H., Ståhle-Bäckdahl M., Borregaard N., Egesten A. The human cationic antimicrobial protein (hCAP-18) is expressed in the epithelium of human epididymis, is present in seminal plasma at high concentrations, and is attached to spermatozoa. Infect Immun. 2000 Jul;68(7):4297–4302. doi: 10.1128/iai.68.7.4297-4302.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Mandal M., Jagannadham M. V., Nagaraj R. Antibacterial activities and conformations of bovine beta-defensin BNBD-12 and analogs:structural and disulfide bridge requirements for activity. Peptides. 2002 Mar;23(3):413–418. doi: 10.1016/s0196-9781(01)00628-3. [DOI] [PubMed] [Google Scholar]
  38. Mangoni M. E., Aumelas A., Charnet P., Roumestand C., Chiche L., Despaux E., Grassy G., Calas B., Chavanieu A. Change in membrane permeability induced by protegrin 1: implication of disulphide bridges for pore formation. FEBS Lett. 1996 Mar 25;383(1-2):93–98. doi: 10.1016/0014-5793(96)00236-0. [DOI] [PubMed] [Google Scholar]
  39. Matsuzaki K., Nakayama M., Fukui M., Otaka A., Funakoshi S., Fujii N., Bessho K., Miyajima K. Role of disulfide linkages in tachyplesin-lipid interactions. Biochemistry. 1993 Nov 2;32(43):11704–11710. doi: 10.1021/bi00094a029. [DOI] [PubMed] [Google Scholar]
  40. Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):1–10. doi: 10.1016/s0005-2736(99)00197-2. [DOI] [PubMed] [Google Scholar]
  41. McNeely T. B., Dealy M., Dripps D. J., Orenstein J. M., Eisenberg S. P., Wahl S. M. Secretory leukocyte protease inhibitor: a human saliva protein exhibiting anti-human immunodeficiency virus 1 activity in vitro. J Clin Invest. 1995 Jul;96(1):456–464. doi: 10.1172/JCI118056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Nagaoka I., Hirota S., Yomogida S., Ohwada A., Hirata M. Synergistic actions of antibacterial neutrophil defensins and cathelicidins. Inflamm Res. 2000 Feb;49(2):73–79. doi: 10.1007/s000110050561. [DOI] [PubMed] [Google Scholar]
  43. Nisapakultorn K., Ross K. F., Herzberg M. C. Calprotectin expression in vitro by oral epithelial cells confers resistance to infection by Porphyromonas gingivalis. Infect Immun. 2001 Jul;69(7):4242–4247. doi: 10.1128/IAI.69.7.4242-4247.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Nisapakultorn K., Ross K. F., Herzberg M. C. Calprotectin expression inhibits bacterial binding to mucosal epithelial cells. Infect Immun. 2001 Jun;69(6):3692–3696. doi: 10.1128/IAI.69.6.3692-3696.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Osterhoff C., Kirchhoff C., Krull N., Ivell R. Molecular cloning and characterization of a novel human sperm antigen (HE2) specifically expressed in the proximal epididymis. Biol Reprod. 1994 Mar;50(3):516–525. doi: 10.1095/biolreprod50.3.516. [DOI] [PubMed] [Google Scholar]
  46. Otvos L., Jr, O I., Rogers M. E., Consolvo P. J., Condie B. A., Lovas S., Bulet P., Blaszczyk-Thurin M. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry. 2000 Nov 21;39(46):14150–14159. doi: 10.1021/bi0012843. [DOI] [PubMed] [Google Scholar]
  47. Palladino M. A., Mallonga T. A., Mishra M. S. Messenger RNA (mRNA) expression for the antimicrobial peptides beta-defensin-1 and beta-defensin-2 in the male rat reproductive tract: beta-defensin-1 mRNA in initial segment and caput epididymidis is regulated by androgens and not bacterial lipopolysaccharides. Biol Reprod. 2003 Feb;68(2):509–515. doi: 10.1095/biolreprod.102.008953. [DOI] [PubMed] [Google Scholar]
  48. Park J. M., Jung J. E., Lee B. J. Antimicrobial peptides from the skin of a Korean frog, Rana rugosa. Biochem Biophys Res Commun. 1994 Nov 30;205(1):948–954. doi: 10.1006/bbrc.1994.2757. [DOI] [PubMed] [Google Scholar]
  49. Raj P. A., Karunakaran T., Sukumaran D. K. Synthesis, microbicidal activity, and solution structure of the dodecapeptide from bovine neutrophils. Biopolymers. 2000 Apr 5;53(4):281–292. doi: 10.1002/(SICI)1097-0282(20000405)53:4<281::AID-BIP1>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  50. Reddy E. S., Bhargava P. M. Seminalplasmin--an antimicrobial protein from bovine seminal plasma which acts in E. coli by specific inhibition of rRNA synthesis. Nature. 1979 Jun 21;279(5715):725–728. doi: 10.1038/279725a0. [DOI] [PubMed] [Google Scholar]
  51. Richardson R. T., Sivashanmugam P., Hall S. H., Hamil K. G., Moore P. A., Ruben S. M., French F. S., O'Rand M. Cloning and sequencing of human Eppin: a novel family of protease inhibitors expressed in the epididymis and testis. Gene. 2001 May 30;270(1-2):93–102. doi: 10.1016/s0378-1119(01)00462-0. [DOI] [PubMed] [Google Scholar]
  52. Robinovitch M. R., Ashley R. L., Iversen J. M., Vigoren E. M., Oppenheim F. G., Lamkin M. Parotid salivary basic proline-rich proteins inhibit HIV-I infectivity. Oral Dis. 2001 Mar;7(2):86–93. [PubMed] [Google Scholar]
  53. Schibli David J., Hunter Howard N., Aseyev Vladimir, Starner Timothy D., Wiencek John M., McCray Paul B., Jr, Tack Brian F., Vogel Hans J. The solution structures of the human beta-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J Biol Chem. 2001 Dec 11;277(10):8279–8289. doi: 10.1074/jbc.M108830200. [DOI] [PubMed] [Google Scholar]
  54. Schutte Brian C., Mitros Joseph P., Bartlett Jennifer A., Walters Jesse D., Jia Hong Peng, Welsh Michael J., Casavant Thomas L., McCray Paul B., Jr Discovery of five conserved beta -defensin gene clusters using a computational search strategy. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2129–2133. doi: 10.1073/pnas.042692699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Shimoda M., Ohki K., Shimamoto Y., Kohashi O. Morphology of defensin-treated Staphylococcus aureus. Infect Immun. 1995 Aug;63(8):2886–2891. doi: 10.1128/iai.63.8.2886-2891.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Shin Song Yub, Yang Sung-Tae, Park Eun Ju, Eom Soo Hyun, Song Woo Keun, Kim Yangmee, Hahm Kyung-Soo, Kim Jae Il. Salt resistance and synergistic effect with vancomycin of alpha-helical antimicrobial peptide P18. Biochem Biophys Res Commun. 2002 Jan 11;290(1):558–562. doi: 10.1006/bbrc.2001.6234. [DOI] [PubMed] [Google Scholar]
  57. Singh P. K., Jia H. P., Wiles K., Hesselberth J., Liu L., Conway B. A., Greenberg E. P., Valore E. V., Welsh M. J., Ganz T. Production of beta-defensins by human airway epithelia. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14961–14966. doi: 10.1073/pnas.95.25.14961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Sitaram N., Nagaraj R. A synthetic 13-residue peptide corresponding to the hydrophobic region of bovine seminalplasmin has antibacterial activity and also causes lysis of red blood cells. J Biol Chem. 1990 Jun 25;265(18):10438–10442. [PubMed] [Google Scholar]
  59. Skerlavaj B., Scocchi M., Gennaro R., Risso A., Zanetti M. Structural and functional analysis of horse cathelicidin peptides. Antimicrob Agents Chemother. 2001 Mar;45(3):715–722. doi: 10.1128/AAC.45.3.715-722.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Subbalakshmi C., Krishnakumari V., Nagaraj R., Sitaram N. Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin. FEBS Lett. 1996 Oct 14;395(1):48–52. doi: 10.1016/0014-5793(96)00996-9. [DOI] [PubMed] [Google Scholar]
  61. Thevissen K., Terras F. R., Broekaert W. F. Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol. 1999 Dec;65(12):5451–5458. doi: 10.1128/aem.65.12.5451-5458.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Travis S. M., Anderson N. N., Forsyth W. R., Espiritu C., Conway B. D., Greenberg E. P., McCray P. B., Jr, Lehrer R. I., Welsh M. J., Tack B. F. Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun. 2000 May;68(5):2748–2755. doi: 10.1128/iai.68.5.2748-2755.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Westerhoff H. V., Juretić D., Hendler R. W., Zasloff M. Magainins and the disruption of membrane-linked free-energy transduction. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6597–6601. doi: 10.1073/pnas.86.17.6597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Wu M., Hancock R. E. Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. J Biol Chem. 1999 Jan 1;274(1):29–35. doi: 10.1074/jbc.274.1.29. [DOI] [PubMed] [Google Scholar]
  65. Wu M., Maier E., Benz R., Hancock R. E. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry. 1999 Jun 1;38(22):7235–7242. doi: 10.1021/bi9826299. [DOI] [PubMed] [Google Scholar]
  66. Yang L., Weiss T. M., Lehrer R. I., Huang H. W. Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys J. 2000 Oct;79(4):2002–2009. doi: 10.1016/S0006-3495(00)76448-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Young L. G., Fröhlich O., Gould K. G. HE2/EP2, an androgen-dependent protein from the epididymis of the chimpanzee, Pan troglodytes. J Reprod Fertil Suppl. 1998;53:215–220. [PubMed] [Google Scholar]
  68. Yu Q., Lehrer R. I., Tam J. P. Engineered salt-insensitive alpha-defensins with end-to-end circularized structures. J Biol Chem. 2000 Feb 11;275(6):3943–3949. doi: 10.1074/jbc.275.6.3943. [DOI] [PubMed] [Google Scholar]
  69. Zasloff Michael. Antimicrobial peptides of multicellular organisms. Nature. 2002 Jan 24;415(6870):389–395. doi: 10.1038/415389a. [DOI] [PubMed] [Google Scholar]
  70. Zhao C., Wang I., Lehrer R. I. Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett. 1996 Nov 4;396(2-3):319–322. doi: 10.1016/0014-5793(96)01123-4. [DOI] [PubMed] [Google Scholar]
  71. von Horsten Hans Henning, Derr Petra, Kirchhoff Christiane. Novel antimicrobial peptide of human epididymal duct origin. Biol Reprod. 2002 Sep;67(3):804–813. doi: 10.1095/biolreprod.102.004564. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES