Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 1;372(Pt 2):279–290. doi: 10.1042/BJ20030002

N-acetylglutamate and its changing role through evolution.

Ljubica Caldovic 1, Mendel Tuchman 1
PMCID: PMC1223426  PMID: 12633501

Abstract

N -Acetylglutamate (NAG) fulfils distinct biological roles in lower and higher organisms. In prokaryotes, lower eukaryotes and plants it is the first intermediate in the biosynthesis of arginine, whereas in ureotelic (excreting nitrogen mostly in the form of urea) vertebrates, it is an essential allosteric cofactor for carbamyl phosphate synthetase I (CPSI), the first enzyme of the urea cycle. The pathway that leads from glutamate to arginine in lower organisms employs eight steps, starting with the acetylation of glutamate to form NAG. In these species, NAG can be produced by two enzymic reactions: one catalysed by NAG synthase (NAGS) and the other by ornithine acetyltransferase (OAT). In ureotelic species, NAG is produced exclusively by NAGS. In lower organisms, NAGS is feedback-inhibited by L-arginine, whereas mammalian NAGS activity is significantly enhanced by this amino acid. The NAGS genes of bacteria, fungi and mammals are more diverse than other arginine-biosynthesis and urea-cycle genes. The evolutionary relationship between the distinctly different roles of NAG and its metabolism in lower and higher organisms remains to be determined. In humans, inherited NAGS deficiency is an autosomal recessive disorder causing hyperammonaemia and a phenotype similar to CPSI deficiency. Several mutations have been recently identified in the NAGS genes of families affected with this disorder.

Full Text

The Full Text of this article is available as a PDF (640.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABELSON P. H., BOLTON E. T., ALDOUS E. Utilization of carbon dioxide in the synthesis of proteins by Escherichia coli. II. J Biol Chem. 1952 Sep;198(1):173–178. [PubMed] [Google Scholar]
  2. Abadjieva A., Hilven P., Pauwels K., Crabeel M. The yeast ARG7 gene product is autoproteolyzed to two subunit peptides, yielding active ornithine acetyltransferase. J Biol Chem. 2000 Apr 14;275(15):11361–11367. doi: 10.1074/jbc.275.15.11361. [DOI] [PubMed] [Google Scholar]
  3. Abadjieva A., Pauwels K., Hilven P., Crabeel M. A new yeast metabolon involving at least the two first enzymes of arginine biosynthesis: acetylglutamate synthase activity requires complex formation with acetylglutamate kinase. J Biol Chem. 2001 Sep 11;276(46):42869–42880. doi: 10.1074/jbc.M103732200. [DOI] [PubMed] [Google Scholar]
  4. Abdelal A. T., Nainan O. V. Regulation of N-acetylglutamate synthesis in Salmonella typhimurium. J Bacteriol. 1979 Feb;137(2):1040–1042. doi: 10.1128/jb.137.2.1040-1042.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Alonso E., García-Pérez M. A., Bueso J., Rubio V. N-acetyl-L-glutamate in brain: assay, levels, and regional and subcellular distribution. Neurochem Res. 1991 Jul;16(7):787–794. doi: 10.1007/BF00965688. [DOI] [PubMed] [Google Scholar]
  6. Alonso E., Rubio V. Participation of ornithine aminotransferase in the synthesis and catabolism of ornithine in mice. Studies using gabaculine and arginine deprivation. Biochem J. 1989 Apr 1;259(1):131–138. doi: 10.1042/bj2590131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Anderson P. M. Glutamine- and N-acetylglutamate-dependent carbamoyl phosphate synthetase in elasmobranchs. Science. 1980 Apr 18;208(4441):291–293. doi: 10.1126/science.6245445. [DOI] [PubMed] [Google Scholar]
  8. Anderson P. M. Purification and properties of the glutamine- and N-acetyl-L-glutamate-dependent carbamoyl phosphate synthetase from liver of Squalus acanthias. J Biol Chem. 1981 Dec 10;256(23):12228–12238. [PubMed] [Google Scholar]
  9. Aoyagi K., Mori M., Tatibana M. Inhibition of urea synthesis by pent-4-enoate associated with decrease in N-acetyl-L-glutamate concentration in isolated rat hepatocytes. Biochim Biophys Acta. 1979 Nov 1;587(4):515–521. doi: 10.1016/0304-4165(79)90005-9. [DOI] [PubMed] [Google Scholar]
  10. BISHOP S. H., CAMPBELL J. W. CARBAMYL PHOSPHATE SYNTHESIS IN THE EARTHWORM LUMBRICUS TERRESTRIS. Science. 1963 Dec 20;142(3599):1583–1585. doi: 10.1126/science.142.3599.1583. [DOI] [PubMed] [Google Scholar]
  11. Bachmann C., Brandis M., Weissenbarth-Riedel E., Burghard R., Colombo J. P. N-acetylglutamate synthetase deficiency, a second patient. J Inherit Metab Dis. 1988;11(2):191–193. doi: 10.1007/BF01799871. [DOI] [PubMed] [Google Scholar]
  12. Bachmann C., Colombo J. P., Jaggi K. N-acetylglutamate synthetase (NAGS) deficiency: diagnosis, clinical observations and treatment. Adv Exp Med Biol. 1982;153:39–45. doi: 10.1007/978-1-4757-6903-6_6. [DOI] [PubMed] [Google Scholar]
  13. Bachmann C., Krähenbühl S., Colombo J. P. Purification and properties of acetyl-CoA:L-glutamate N-acetyltransferase from human liver. Biochem J. 1982 Jul 1;205(1):123–127. doi: 10.1042/bj2050123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bachmann C., Krähenbühl S., Colombo J. P., Schubiger G., Jaggi K. H., Tönz O. N-acetylglutamate synthetase deficiency: a disorder of ammonia detoxication. N Engl J Med. 1981 Feb 26;304(9):543–543. doi: 10.1056/NEJM198102263040918. [DOI] [PubMed] [Google Scholar]
  15. Burlina A. B., Bachmann C., Wermuth B., Bordugo A., Ferrari V., Colombo J. P., Zacchello F. Partial N-acetylglutamate synthetase deficiency: a new case with uncontrollable movement disorders. J Inherit Metab Dis. 1992;15(3):395–398. doi: 10.1007/BF02435986. [DOI] [PubMed] [Google Scholar]
  16. Caldovic Ljubica, Morizono Hiroki, Gracia Panglao Maria, Gallegos Rene, Yu Xiaolin, Shi Dashuang, Malamy Michael H., Allewell Norma M., Tuchman Mendel. Cloning and expression of the human N-acetylglutamate synthase gene. Biochem Biophys Res Commun. 2002 Dec 13;299(4):581–586. doi: 10.1016/s0006-291x(02)02696-7. [DOI] [PubMed] [Google Scholar]
  17. Caldovic Ljubica, Morizono Hiroki, Panglao Maria Gracia, Cheng Sabrina F., Packman Seymour, Tuchman Mendel. Null mutations in the N-acetylglutamate synthase gene associated with acute neonatal disease and hyperammonemia. Hum Genet. 2003 Feb 20;112(4):364–368. doi: 10.1007/s00439-003-0909-5. [DOI] [PubMed] [Google Scholar]
  18. Caldovic Ljubica, Morizono Hiroki, Yu Xiaolin, Thompson Mark, Shi Dashuang, Gallegos Rene, Allewell Norma M., Malamy Michael H., Tuchman Mendel. Identification, cloning and expression of the mouse N-acetylglutamate synthase gene. Biochem J. 2002 Jun 15;364(Pt 3):825–831. doi: 10.1042/BJ20020161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Campbell J. W. Arginine and urea biosynthesis in the land planarian: its significance in biochemical evolution. Nature. 1965 Dec 25;208(5017):1299–1301. doi: 10.1038/2081299a0. [DOI] [PubMed] [Google Scholar]
  20. Casey C. A., Anderson P. M. Glutamine- and N-acetyl-L-glutamate-dependent carbamoyl phosphate synthetase from Micropterus salmoides. Purification, properties, and inhibition by glutamine analogs. J Biol Chem. 1983 Jul 25;258(14):8723–8732. [PubMed] [Google Scholar]
  21. Casey C. A., Anderson P. M. Submitochondrial localization of arginase and other enzymes associated with urea synthesis and nitrogen metabolism, in liver of Squalus acanthias. Comp Biochem Physiol B. 1985;82(2):307–315. doi: 10.1016/0305-0491(85)90246-9. [DOI] [PubMed] [Google Scholar]
  22. Cheung C. W., Raijman L. Arginine, mitochondrial arginase, and the control of carbamyl phosphate synthesis. Arch Biochem Biophys. 1981 Jul;209(2):643–649. doi: 10.1016/0003-9861(81)90324-6. [DOI] [PubMed] [Google Scholar]
  23. Cheung C. W., Raijman L. The regulation of carbamyl phosphate synthetase (ammonia) in rat liver mitochondria. Effects of acetylglutamate concentration and ATP translocation. J Biol Chem. 1980 Jun 10;255(11):5051–5057. [PubMed] [Google Scholar]
  24. Coude F. X., Grimber G. Inhibition of urea synthesis by pent-4-enoic acid: potentiation by ammonia. Biochem Biophys Res Commun. 1984 Jan 13;118(1):47–52. doi: 10.1016/0006-291x(84)91065-9. [DOI] [PubMed] [Google Scholar]
  25. Coude F. X., Grimber G., Parvy P., Rabier D., Petit F. Inhibition of ureagenesis by valproate in rat hepatocytes. Role of N-acetylglutamate and acetyl-CoA. Biochem J. 1983 Oct 15;216(1):233–236. doi: 10.1042/bj2160233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Coude F. X., Sweetman L., Nyhan W. L. Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia. J Clin Invest. 1979 Dec;64(6):1544–1551. doi: 10.1172/JCI109614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Coudé F. X., Grimber G., Parvy P., Kamoun P. N-Acetyl glutamate synthetase in human liver: regulation of activity by L-arginine and N-acetylglutamate. Biochem Biophys Res Commun. 1981 Oct 15;102(3):1016–1020. doi: 10.1016/0006-291x(81)91639-9. [DOI] [PubMed] [Google Scholar]
  28. Coudé F. X., Grimber G., Parvy P., Pham Dinh D., Bardet J., Saudubray J. M. Characterization of enzymatic deficiencies of branched chain amino-acid catabolism in human fibroblasts by genetic complementation. Biochem Biophys Res Commun. 1983 Jul 18;114(1):175–182. doi: 10.1016/0006-291x(83)91610-8. [DOI] [PubMed] [Google Scholar]
  29. Coudé F. X., Rabier D., Cathelineau L., Grimber G., Parvy P., Kamoun P. A mechanism for valproate-induced hyperammonemia. Adv Exp Med Biol. 1982;153:153–161. doi: 10.1007/978-1-4757-6903-6_21. [DOI] [PubMed] [Google Scholar]
  30. Crabeel M., Abadjieva A., Hilven P., Desimpelaere J., Soetens O. Characterization of the Saccharomyces cerevisiae ARG7 gene encoding ornithine acetyltransferase, an enzyme also endowed with acetylglutamate synthase activity. Eur J Biochem. 1997 Dec 1;250(2):232–241. doi: 10.1111/j.1432-1033.1997.0232a.x. [DOI] [PubMed] [Google Scholar]
  31. Cunin R., Glansdorff N., Piérard A., Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev. 1986 Sep;50(3):314–352. doi: 10.1128/mr.50.3.314-352.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Cybis J., Davis R. H. Organization and control in the arginine biosynthetic pathway of Neurospora. J Bacteriol. 1975 Jul;123(1):196–202. doi: 10.1128/jb.123.1.196-202.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Davis R. H. Compartmental and regulatory mechanisms in the arginine pathways of Neurospora crassa and Saccharomyces cerevisiae. Microbiol Rev. 1986 Sep;50(3):280–313. doi: 10.1128/mr.50.3.280-313.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Elpeleg O. N., Colombo J. P., Amir N., Bachmann C., Hurvitz H. Late-onset form of partial N-acetylglutamate synthetase deficiency. Eur J Pediatr. 1990 Jun;149(9):634–636. doi: 10.1007/BF02034751. [DOI] [PubMed] [Google Scholar]
  35. Elpeleg Orly, Shaag Avraham, Ben-Shalom Efrat, Schmid Tal, Bachmann Claude. N-acetylglutamate synthase deficiency and the treatment of hyperammonemic encephalopathy. Ann Neurol. 2002 Dec;52(6):845–849. doi: 10.1002/ana.10406. [DOI] [PubMed] [Google Scholar]
  36. Felipo V., Miñana M. D., Grisolía S. Long-term ingestion of ammonium increases acetylglutamate and urea levels without affecting the amount of carbamoyl-phosphate synthase. Eur J Biochem. 1988 Oct 1;176(3):567–571. doi: 10.1111/j.1432-1033.1988.tb14315.x. [DOI] [PubMed] [Google Scholar]
  37. Forget P. P., van Oosterhout M., Bakker J. A., Wermuth B., Vles J. S., Spaapen L. J. Partial N-acetyl-glutamate synthetase deficiency masquerading as a valproic acid-induced Reye-like syndrome. Acta Paediatr. 1999 Dec;88(12):1409–1411. doi: 10.1080/080352599750030194. [DOI] [PubMed] [Google Scholar]
  38. GRISOLIA S., COHEN P. P. Catalytic rôle of of glutamate derivatives in citrulline biosynthesis. J Biol Chem. 1953 Oct;204(2):753–757. [PubMed] [Google Scholar]
  39. Gessert S. F., Kim J. H., Nargang F. E., Weiss R. L. A polyprotein precursor of two mitochondrial enzymes in Neurospora crassa. Gene structure and precursor processing. J Biol Chem. 1994 Mar 18;269(11):8189–8203. [PubMed] [Google Scholar]
  40. Grau E., Felipo V., Miñana M. D., Grisolía S. Treatment of hyperammonemia with carbamylglutamate in rats. Hepatology. 1992 Mar;15(3):446–448. doi: 10.1002/hep.1840150315. [DOI] [PubMed] [Google Scholar]
  41. Guffon N., Vianey-Saban C., Bourgeois J., Rabier D., Colombo J. P., Guibaud P. A new neonatal case of N-acetylglutamate synthase deficiency treated by carbamylglutamate. J Inherit Metab Dis. 1995;18(1):61–65. doi: 10.1007/BF00711374. [DOI] [PubMed] [Google Scholar]
  42. Guthöhrlein G., Knappe J. Structure and function of carbamoylphosphate synthase. I. Transitions between two catalytically inactive forms and the active form. Eur J Biochem. 1968 Dec;7(1):119–127. doi: 10.1111/j.1432-1033.1968.tb19582.x. [DOI] [PubMed] [Google Scholar]
  43. HALL L. M., METZENBERG R. L., COHEN P. P. Isolation and characterization of a naturally occurring cofactor of carbamyl phosphate biosynthesis. J Biol Chem. 1958 Feb;230(2):1013–1021. [PubMed] [Google Scholar]
  44. Haas D., Kurer V., Leisinger T. N-acetylglutamate synthetase of Pseudomonas aeruginosa. An assay in vitro and feedback inhibition by arginine. Eur J Biochem. 1972 Dec 4;31(2):290–295. doi: 10.1111/j.1432-1033.1972.tb02531.x. [DOI] [PubMed] [Google Scholar]
  45. Haas D., Leisinger T. In vitro assay and some properties of N-acetylglutamate synthetase from Escherichia coli. Pathol Microbiol (Basel) 1974;40(3):140–141. [PubMed] [Google Scholar]
  46. Haas D., Leisinger T. Multiple control of N-acetylglutamate synthetase from Pseudomonas aeruginosa: synergistic inhibition by acetylglutamate and polyamines. Biochem Biophys Res Commun. 1974 Sep 9;60(1):42–47. doi: 10.1016/0006-291x(74)90169-7. [DOI] [PubMed] [Google Scholar]
  47. Harris B. Z., Singer M. Identification and characterization of the Myxococcus xanthus argE gene. J Bacteriol. 1998 Dec;180(23):6412–6414. doi: 10.1128/jb.180.23.6412-6414.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Hayase K., Naganuma Y., Koie M., Yoshida A. Role of N-acetylglutamate turnover in urea synthesis by rats treated with the thyroid hormone. Biosci Biotechnol Biochem. 1998 Mar;62(3):535–539. doi: 10.1271/bbb.62.535. [DOI] [PubMed] [Google Scholar]
  49. Hayase K., Yonekawa G., Yoshida A. Changes in liver concentration of N-acetylglutamate and ornithine are involved in regulating urea synthesis in rats treated with thyroid hormone. J Nutr. 1992 May;122(5):1143–1148. doi: 10.1093/jn/122.5.1143. [DOI] [PubMed] [Google Scholar]
  50. Hayase K., Yoshida A. Role of ornithine in the N-acetylglutamate turnover in the liver of rats. Biosci Biotechnol Biochem. 1999 Mar;63(3):506–509. doi: 10.1271/bbb.63.506. [DOI] [PubMed] [Google Scholar]
  51. Hilger F., Culot M., Minet M., Pierard A., Grenson M., Wiame J. M. Studies on the kinetics of the enzyme sequence mediating arginine synthesis in Saccharomyces cerevisiae. J Gen Microbiol. 1973 Mar;75(1):33–41. doi: 10.1099/00221287-75-1-33. [DOI] [PubMed] [Google Scholar]
  52. Hinde R. W., Jacobson J. A., Weiss R. L., Davis R. H. N-acetyl-L-glutamate synthase of Neurospora crassa. Characteristics, localization, regulation, and genetic control. J Biol Chem. 1986 May 5;261(13):5848–5852. [PubMed] [Google Scholar]
  53. Hinnie J., Colombo J. P., Wermuth B., Dryburgh F. J. N-Acetylglutamate synthetase deficiency responding to carbamylglutamate. J Inherit Metab Dis. 1997 Nov;20(6):839–840. doi: 10.1023/a:1005344507536. [DOI] [PubMed] [Google Scholar]
  54. Hoare D. S., Hoare S. L. Feedback regulation of arginine biosynthesis in blue-green algae and photosynthetic bacteria. J Bacteriol. 1966 Aug;92(2):375–379. doi: 10.1128/jb.92.2.375-379.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Horne F. R. Urea metabolism in an estivating terrestrial snail Bulimulus dealbatus. Am J Physiol. 1973 Apr;224(4):781–787. doi: 10.1152/ajplegacy.1973.224.4.781. [DOI] [PubMed] [Google Scholar]
  56. Jauniaux J. C., Urrestarazu L. A., Wiame J. M. Arginine metabolism in Saccharomyces cerevisiae: subcellular localization of the enzymes. J Bacteriol. 1978 Mar;133(3):1096–1107. doi: 10.1128/jb.133.3.1096-1107.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Johnston J. D., Brand M. D. The mechanism of Ca2+ stimulation of citrulline and N-acetylglutamate synthesis by mitochondria. Biochim Biophys Acta. 1990 Jan 29;1033(1):85–90. doi: 10.1016/0304-4165(90)90198-6. [DOI] [PubMed] [Google Scholar]
  58. Julsrud E. A., Walsh P. J., Anderson P. M. N-acetyl-L-glutamate and the urea cycle in gulf toadfish (Opsanus beta) and other fish. Arch Biochem Biophys. 1998 Feb 1;350(1):55–60. doi: 10.1006/abbi.1997.0511. [DOI] [PubMed] [Google Scholar]
  59. Kamemoto E. S., Atkinson D. E. Modulation of the activity of rat liver acetylglutamate synthase by pH and arginine concentration. Arch Biochem Biophys. 1985 Nov 15;243(1):100–107. doi: 10.1016/0003-9861(85)90777-5. [DOI] [PubMed] [Google Scholar]
  60. Kawamoto S., Ishida H., Mori M., Tatibana M. Regulation of N-acetylglutamate synthetase in mouse liver. Postprandial changes in sensitivity to activation by arginine. Eur J Biochem. 1982 Apr;123(3):637–641. [PubMed] [Google Scholar]
  61. Kawamoto S., Sonoda T., Ohtake A., Tatibana M. Stimulatory effect of arginine on acetylglutamate synthesis in isolated mitochondria of mouse and rat liver. Biochem J. 1985 Dec 1;232(2):329–334. doi: 10.1042/bj2320329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Kim S., Paik W. K., Cohen P. P. Ammonia intoxication in rats: protection by N-carbamoyl-L-glutamate plus L-arginine. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3530–3533. doi: 10.1073/pnas.69.12.3530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Korte J. J., Salo W. L., Cabrera V. M., Wright P. A., Felskie A. K., Anderson P. M. Expression of carbamoyl-phosphate synthetase III mRNA during the early stages of development and in muscle of adult rainbow trout (Oncorhynchus mykiss). J Biol Chem. 1997 Mar 7;272(10):6270–6277. doi: 10.1074/jbc.272.10.6270. [DOI] [PubMed] [Google Scholar]
  64. Landers P. J. Therapieplan für die diabetische Ketoazidose. Med Welt. 1972 Feb 26;9:298–300. [PubMed] [Google Scholar]
  65. Lee J. A decrease in ammonia content in portal blood of rabbits administered with ginseng powder. Nihon Juigaku Zasshi. 1978 Dec;40(6):729–731. doi: 10.1292/jvms1939.40.729. [DOI] [PubMed] [Google Scholar]
  66. Leisinger T., Haas D. N-Acetylglutamate synthase of Escherichia coli regulation of synthesis and activity by arginine. J Biol Chem. 1975 Mar 10;250(5):1690–1693. [PubMed] [Google Scholar]
  67. Liu Y., Van Heeswijck R., Høj P., Hoogenraad N. Purification and characterization of ornithine acetyltransferase from Saccharomyces cerevisiae. Eur J Biochem. 1995 Mar 1;228(2):291–296. [PubMed] [Google Scholar]
  68. Lof C., Cohen M., Vermeulen L. P., van Roermund C. W., Wanders R. J., Meijer A. J. Properties of carbamoyl-phosphate synthetase (ammonia) in rat-liver mitochondria made permeable with toluene. Eur J Biochem. 1983 Sep 15;135(2):251–258. doi: 10.1111/j.1432-1033.1983.tb07645.x. [DOI] [PubMed] [Google Scholar]
  69. Lund P., Wiggins D. Is N-acetylglutamate a short-term regulator of urea synthesis? Biochem J. 1984 Mar 15;218(3):991–994. doi: 10.1042/bj2180991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Lusty C. J. Catalytically active monomer and dimer forms of rat liver carbamoyl-phosphate synthetase. Biochemistry. 1981 Jun 23;20(13):3665–3674. doi: 10.1021/bi00516a001. [DOI] [PubMed] [Google Scholar]
  71. MARSHALL M., METZENBERG R. L., COHEN P. P. Purification of carbamyl phosphate synthetase from frog liver. J Biol Chem. 1958 Jul;233(1):102–105. [PubMed] [Google Scholar]
  72. Maas W. K., Novelli G. D., Lipmann F. Acetylation of Glutamic Acid by Extracts of Escherichia Coli. Proc Natl Acad Sci U S A. 1953 Oct;39(10):1004–1008. doi: 10.1073/pnas.39.10.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Marc F., Weigel P., Legrain C., Almeras Y., Santrot M., Glansdorff N., Sakanyan V. Characterization and kinetic mechanism of mono- and bifunctional ornithine acetyltransferases from thermophilic microorganisms. Eur J Biochem. 2000 Aug;267(16):5217–5226. doi: 10.1046/j.1432-1327.2000.01593.x. [DOI] [PubMed] [Google Scholar]
  74. Marc F., Weigel P., Legrain C., Glansdorff N., Sakanyan V. An invariant threonine is involved in self-catalyzed cleavage of the precursor protein for ornithine acetyltransferase. J Biol Chem. 2001 Apr 24;276(27):25404–25410. doi: 10.1074/jbc.M100392200. [DOI] [PubMed] [Google Scholar]
  75. Martin P. R., Mulks M. H. Sequence analysis and complementation studies of the argJ gene encoding ornithine acetyltransferase from Neisseria gonorrhoeae. J Bacteriol. 1992 Apr;174(8):2694–2701. doi: 10.1128/jb.174.8.2694-2701.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Marvil D. K., Leisinger T. N-acetylglutamate synthase of Escherichia coli: purification, characterization, and molecular properties. J Biol Chem. 1977 May 25;252(10):3295–3303. [PubMed] [Google Scholar]
  77. McCudden C. R., Powers-Lee S. G. Required allosteric effector site for N-acetylglutamate on carbamoyl-phosphate synthetase I. J Biol Chem. 1996 Jul 26;271(30):18285–18294. doi: 10.1074/jbc.271.30.18285. [DOI] [PubMed] [Google Scholar]
  78. McGivan J. D., Chappell J. B. On the metabolic function of glutamate dehydrogenase in rat liver. FEBS Lett. 1975 Mar 15;52(1):1–7. doi: 10.1016/0014-5793(75)80624-7. [DOI] [PubMed] [Google Scholar]
  79. Meijer A. J., Lamers W. H., Chamuleau R. A. Nitrogen metabolism and ornithine cycle function. Physiol Rev. 1990 Jul;70(3):701–748. doi: 10.1152/physrev.1990.70.3.701. [DOI] [PubMed] [Google Scholar]
  80. Meijer A. J., Lof C., Ramos I. C., Verhoeven A. J. Control of ureogenesis. Eur J Biochem. 1985 Apr 1;148(1):189–196. doi: 10.1111/j.1432-1033.1985.tb08824.x. [DOI] [PubMed] [Google Scholar]
  81. Meijer A. J., Van Woerkom G. M. Turnover of N-acetylglutamate in isolated rat hepatocytes. Biochim Biophys Acta. 1982 Nov 17;721(3):240–246. doi: 10.1016/0167-4889(82)90075-1. [DOI] [PubMed] [Google Scholar]
  82. Meijer A. J., Verhoeven A. J. N-acetylglutamate and urea synthesis. Biochem J. 1984 Oct 15;223(2):559–560. doi: 10.1042/bj2230559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Mommsen T. P., Walsh P. J. Evolution of urea synthesis in vertebrates: the piscine connection. Science. 1989 Jan 6;243(4887):72–75. doi: 10.1126/science.2563172. [DOI] [PubMed] [Google Scholar]
  84. Mora J., Tarrab R., Martuscelli J., Soberón G. Characteristics of arginases from ureotelic and non-ureotelic animals. Biochem J. 1965 Sep;96(3):588–594. doi: 10.1042/bj0960588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Mori M., Cohen P. P. Preparation of crystalline carbamyl phosphate synthetase-I from frog liver. J Biol Chem. 1978 Nov 25;253(22):8337–8339. [PubMed] [Google Scholar]
  86. Morimoto B. H., Brady J. F., Atkinson D. E. Effect of level of dietary protein on arginine-stimulated citrulline synthesis. Correlation with mitochondrial N-acetylglutamate concentrations. Biochem J. 1990 Dec 15;272(3):671–675. doi: 10.1042/bj2720671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Morita T., Mori M., Tatibana M. Regulation of N-acetyl-L-glutamate degradation in mammalian liver. J Biochem. 1982 Feb;91(2):563–569. doi: 10.1093/oxfordjournals.jbchem.a133728. [DOI] [PubMed] [Google Scholar]
  88. Morris A. A., Richmond S. W., Oddie S. J., Pourfarzam M., Worthington V., Leonard J. V. N-acetylglutamate synthetase deficiency: favourable experience with carbamylglutamate. J Inherit Metab Dis. 1998 Dec;21(8):867–868. doi: 10.1023/a:1005478904186. [DOI] [PubMed] [Google Scholar]
  89. Morris C. J., Thompson J. F. Acetyl coenzyme a-glutamate acetyltransferase and N-acetylornithine-glutamate acetyltransferase of chlorella. Plant Physiol. 1975 Jun;55(6):960–967. doi: 10.1104/pp.55.6.960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Morris C. J., Thompson J. F., Johnson C. M. Metabolism of Glutamic Acid and N-Acetylglutamic Acid in Leaf Discs and Cell-free Extracts of Higher Plants. Plant Physiol. 1969 Jul;44(7):1023–1026. doi: 10.1104/pp.44.7.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. O'Connor J. E., Jordá A., Grisolía S. Acute and chronic effects of carbamyl glutamate on blood urea and ammonia. Eur J Pediatr. 1985 Jan;143(3):196–197. doi: 10.1007/BF00442137. [DOI] [PubMed] [Google Scholar]
  92. Palacios R., Tarrab R., Soberón G. Studies on the advent of ureotelism. Factors that render the hepatic arginase of the Mexican axolotl able to hydrolyse endogenous arginine. Biochem J. 1968 Dec;110(3):425–433. doi: 10.1042/bj1100425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Palekar A. G., Angadi C. V. Effect of growth hormone on rat liver N-acetyl-L-glutamate. Arch Biochem Biophys. 1985 Mar;237(2):430–432. doi: 10.1016/0003-9861(85)90296-6. [DOI] [PubMed] [Google Scholar]
  94. Pandya A. L., Koch R., Hommes F. A., Williams J. C. N-acetylglutamate synthetase deficiency: clinical and laboratory observations. J Inherit Metab Dis. 1991;14(5):685–690. doi: 10.1007/BF01799936. [DOI] [PubMed] [Google Scholar]
  95. Plecko B., Erwa W., Wermuth B. Partial N-acetylglutamate synthetase deficiency in a 13-year-old girl: diagnosis and response to treatment with N-carbamylglutamate. Eur J Pediatr. 1998 Dec;157(12):996–998. doi: 10.1007/s004310050985. [DOI] [PubMed] [Google Scholar]
  96. Powers-Lee S. G., Corina K. Domain structure of rat liver carbamoyl phosphate synthetase I. J Biol Chem. 1986 Nov 25;261(33):15349–15352. [PubMed] [Google Scholar]
  97. Randall D. J., Wood C. M., Perry S. F., Bergman H., Maloiy G. M., Mommsen T. P., Wright P. A. Urea excretion as a strategy for survival in a fish living in a very alkaline environment. Nature. 1989 Jan 12;337(6203):165–166. doi: 10.1038/337165a0. [DOI] [PubMed] [Google Scholar]
  98. Reglero A., Rivas J., Mendelson J., Wallace R., Grisolia S. Deacylation and transacetylation of acetyl glutamate and acetyl ornithine in rat liver. FEBS Lett. 1977 Sep 1;81(1):13–17. doi: 10.1016/0014-5793(77)80917-4. [DOI] [PubMed] [Google Scholar]
  99. Reichelt K. L., Kvamme E. Acetylated and peptide bound glutamate and sapartate in brain. J Neurochem. 1967 Oct;14(10):987–995. doi: 10.1111/j.1471-4159.1967.tb09510.x. [DOI] [PubMed] [Google Scholar]
  100. Rodriguez-Aparicio L. B., Guadalajara A. M., Rubio V. Physical location of the site for N-acetyl-L-glutamate, the allosteric activator of carbamoyl phosphate synthetase, in the 20-kilodalton COOH-terminal domain. Biochemistry. 1989 Apr 4;28(7):3070–3074. doi: 10.1021/bi00433a050. [DOI] [PubMed] [Google Scholar]
  101. Rubio V., Grisolía S. Treating urea cycle defects. Nature. 1981 Aug 6;292(5823):496–496. doi: 10.1038/292496a0. [DOI] [PubMed] [Google Scholar]
  102. Saheki T., Katsunuma T., Sase M. Regulation of urea synthesis in rat liver. Changes of ornithine and acetylglutamate concentrations in the livers of rats subjected to dietary transitions. J Biochem. 1977 Aug;82(2):551–558. [PubMed] [Google Scholar]
  103. Saheki T., Katunuma N. Analysis of regulatory factors for urea synthesis by isolated perfused rat liver. I. Urea synthesis with ammonia and glutamine as nitrogen sources. J Biochem. 1975 Mar;77(3):659–669. doi: 10.1093/oxfordjournals.jbchem.a130768. [DOI] [PubMed] [Google Scholar]
  104. Saheki T., Ohkubo T., Katsunuma T. Regulation of urea synthesis in rat liver. Increase in the concentrations of ornithine and acetylglutamate in rat liver in response to urea synthesis stimulated by the injection of an ammonium salt. J Biochem. 1978 Dec;84(6):1423–1430. doi: 10.1093/oxfordjournals.jbchem.a132264. [DOI] [PubMed] [Google Scholar]
  105. Sakanyan V., Charlier D., Legrain C., Kochikyan A., Mett I., Piérard A., Glansdorff N. Primary structure, partial purification and regulation of key enzymes of the acetyl cycle of arginine biosynthesis in Bacillus stearothermophilus: dual function of ornithine acetyltransferase. J Gen Microbiol. 1993 Mar;139(3):393–402. doi: 10.1099/00221287-139-3-393. [DOI] [PubMed] [Google Scholar]
  106. Sakanyan V., Petrosyan P., Lecocq M., Boyen A., Legrain C., Demarez M., Hallet J. N., Glansdorff N. Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway. Microbiology. 1996 Jan;142(Pt 1):99–108. doi: 10.1099/13500872-142-1-99. [DOI] [PubMed] [Google Scholar]
  107. Schubiger G., Bachmann C., Barben P., Colombo J. P., Tönz O., Schüpbach D. N-acetylglutamate synthetase deficiency: diagnosis, management and follow-up of a rare disorder of ammonia detoxication. Eur J Pediatr. 1991 Mar;150(5):353–356. doi: 10.1007/BF01955939. [DOI] [PubMed] [Google Scholar]
  108. Shigesada K., Aoyagi K., Tatibana M. Role of acetylglutamate in ureotelism. Variations in acetylglutamate level and its possible significance in control of urea synthesis in mammalian liver. Eur J Biochem. 1978 Apr 17;85(2):385–391. doi: 10.1111/j.1432-1033.1978.tb12250.x. [DOI] [PubMed] [Google Scholar]
  109. Shigesada K., Tatibana M. Enzymatic synthesis of acetylglutamate by mammalian liver preparations and its stimulation by arginine. Biochem Biophys Res Commun. 1971 Sep;44(5):1117–1124. doi: 10.1016/s0006-291x(71)80201-2. [DOI] [PubMed] [Google Scholar]
  110. Shigesada K., Tatibana M. N-Acetylglutamate synthetase from rat-liver mitochondria. Partial purification and catalytic properties. Eur J Biochem. 1978 Mar;84(1):285–291. doi: 10.1111/j.1432-1033.1978.tb12167.x. [DOI] [PubMed] [Google Scholar]
  111. Shigesada K., Tatibana M. Role of acetylglutamate in ureotelism. I. Occurrence and biosynthesis of acetylglutamate in mouse and rat tissues. J Biol Chem. 1971 Sep 25;246(18):5588–5595. [PubMed] [Google Scholar]
  112. Sonoda T., Tatibana M. Purification of N-acetyl-L-glutamate synthetase from rat liver mitochondria and substrate and activator specificity of the enzyme. J Biol Chem. 1983 Aug 25;258(16):9839–9844. [PubMed] [Google Scholar]
  113. Speeg K. V., Jr, Campbell J. W. Arginine and urea metabolism in terrestrial snails. Am J Physiol. 1969 Apr;216(4):1003–1012. doi: 10.1152/ajplegacy.1969.216.4.1003. [DOI] [PubMed] [Google Scholar]
  114. Staddon J. M., Bradford N. M., McGivan J. D. Effects of glucagon in vivo on the N-acetylglutamate, glutamate and glutamine contents of rat liver. Biochem J. 1984 Feb 1;217(3):855–857. doi: 10.1042/bj2170855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Staub M., Dénes G. Mechanism of arginine biosynthesis in Chlamydomonas reinhardti. I. Purification and properties of ornithine acetyltransferase. Biochim Biophys Acta. 1966 Oct 17;128(1):82–91. doi: 10.1016/0926-6593(66)90144-5. [DOI] [PubMed] [Google Scholar]
  116. Stewart P. M., Batshaw M., Valle D., Walser M. Effects of arginine-free meals on ureagenesis in cats. Am J Physiol. 1981 Oct;241(4):E310–E315. doi: 10.1152/ajpendo.1981.241.4.E310. [DOI] [PubMed] [Google Scholar]
  117. Stewart P. M., Walser M. Short term regulation of ureagenesis. J Biol Chem. 1980 Jun 10;255(11):5270–5280. [PubMed] [Google Scholar]
  118. Tramell P. R., Campbell J. W. Carbamyl phosphate synthesis in a land snail, Strophocheilus oblongus. J Biol Chem. 1970 Dec 25;245(24):6634–6641. [PubMed] [Google Scholar]
  119. Trost L. C., Lemasters J. J. The mitochondrial permeability transition: a new pathophysiological mechanism for Reye's syndrome and toxic liver injury. J Pharmacol Exp Ther. 1996 Sep;278(3):1000–1005. [PubMed] [Google Scholar]
  120. Uchiyama C., Mori M., Tatibana M. Subcellular localization and properties of N-acetylglutamate synthase in rat small intestinal mucosa. J Biochem. 1981 Jun;89(6):1777–1786. doi: 10.1093/oxfordjournals.jbchem.a133377. [DOI] [PubMed] [Google Scholar]
  121. VOGEL H. J., ABELSON P. H., BOLTON E. T. Short communications and preliminary notes on ornithine and proline synthesis in escherichia coli. Biochim Biophys Acta. 1953 Aug;11(4):584–585. doi: 10.1016/0006-3002(53)90099-7. [DOI] [PubMed] [Google Scholar]
  122. VOGEL R. H., VOGEL H. J. Acetylated intermediates of arginine synthesis in Bacillus subtilis. Biochim Biophys Acta. 1963 Jan 1;69:174–176. doi: 10.1016/0006-3002(63)91241-1. [DOI] [PubMed] [Google Scholar]
  123. VYAS S., MAAS W. K. Feedback inhibition of acetylglutamate synthetase by arginine in Escherichia coli. Arch Biochem Biophys. 1963 Mar;100:542–546. doi: 10.1016/0003-9861(63)90124-3. [DOI] [PubMed] [Google Scholar]
  124. Van Dijk M., Lund P. N-Acetylglutamate in rat liver during foetal development. Biochem J. 1984 Sep 15;222(3):837–838. doi: 10.1042/bj2220837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Vockley J., Vockley C. M., Lin S. P., Tuchman M., Wu T. C., Lin C. Y., Seashore M. R. Normal N-acetylglutamate concentration measured in liver from a new patient with N-acetylglutamate synthetase deficiency: physiologic and biochemical implications. Biochem Med Metab Biol. 1992 Feb;47(1):38–46. doi: 10.1016/0885-4505(92)90006-k. [DOI] [PubMed] [Google Scholar]
  126. Vogel H. J. Path of Ornithine Synthesis in Escherichia Coli. Proc Natl Acad Sci U S A. 1953 Jul;39(7):578–583. doi: 10.1073/pnas.39.7.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Wakabayashi Y., Iwashima A., Yamada E., Yamada R. Enzymological evidence for the indispensability of small intestine in the synthesis of arginine from glutamate. II. N-acetylglutamate synthase. Arch Biochem Biophys. 1991 Nov 15;291(1):9–14. doi: 10.1016/0003-9861(91)90098-4. [DOI] [PubMed] [Google Scholar]
  128. Walsh P, Milligan C. Effects of feeding and confinement on nitrogen metabolism and excretion in the gulf toadfish Opsanus beta. J Exp Biol. 1995;198(Pt 7):1559–1566. doi: 10.1242/jeb.198.7.1559. [DOI] [PubMed] [Google Scholar]
  129. Williams C. A., Tiefenbach S., McReynolds J. W. Valproic acid-induced hyperammonemia in mentally retarded adults. Neurology. 1984 Apr;34(4):550–553. doi: 10.1212/wnl.34.4.550. [DOI] [PubMed] [Google Scholar]
  130. Windmueller H. G., Spaeth A. E. Source and fate of circulating citrulline. Am J Physiol. 1981 Dec;241(6):E473–E480. doi: 10.1152/ajpendo.1981.241.6.E473. [DOI] [PubMed] [Google Scholar]
  131. Wipe B., Leisinger T. Regulation of activity and synthesis of N-acetylglutamate synthase from Saccharomyces cerevisiae. J Bacteriol. 1979 Dec;140(3):874–880. doi: 10.1128/jb.140.3.874-880.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Wixom R. L., Reddy M. K., Cohen P. P. A concerted response of the enzymes of urea biosynthesis during thyroxine-induced metamorphosis of Rana catesbeiana. J Biol Chem. 1972 Jun 10;247(11):3684–3692. doi: 10.2172/4649772. [DOI] [PubMed] [Google Scholar]
  133. Wolf B., Hsia Y. E., Tanaka K., Rosenberg L. E. Correlation between serum propionate and blood ammonia concentrations in propionic acidemia. J Pediatr. 1978 Sep;93(3):471–473. doi: 10.1016/s0022-3476(78)81167-6. [DOI] [PubMed] [Google Scholar]
  134. Wolf E. C., Weiss R. L. Acetylglutamate kinase. A mitochondrial feedback-sensitive enzyme of arginine biosynthesis in Neurospora crassa. J Biol Chem. 1980 Oct 10;255(19):9189–9195. [PubMed] [Google Scholar]
  135. Wright P. A., Perry S. F., Moon T. W. Regulation of hepatic gluconeogenesis and glycogenolysis by catecholamines in rainbow trout during environmental hypoxia. J Exp Biol. 1989 Nov;147:169–188. doi: 10.1242/jeb.147.1.169. [DOI] [PubMed] [Google Scholar]
  136. Wu G., Morris S. M., Jr Arginine metabolism: nitric oxide and beyond. Biochem J. 1998 Nov 15;336(Pt 1):1–17. doi: 10.1042/bj3360001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Xu Y., Liang Z., Legrain C., Rüger H. J., Glansdorff N. Evolution of arginine biosynthesis in the bacterial domain: novel gene-enzyme relationships from psychrophilic Moritella strains (Vibrionaceae) and evolutionary significance of N-alpha-acetyl ornithinase. J Bacteriol. 2000 Mar;182(6):1609–1615. doi: 10.1128/jb.182.6.1609-1615.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Yamada E., Wakabayashi Y. Development of pyrroline-5-carboxylate synthase and N-acetylglutamate synthase and their changes in lactation and aging. Arch Biochem Biophys. 1991 Nov 15;291(1):15–23. doi: 10.1016/0003-9861(91)90099-5. [DOI] [PubMed] [Google Scholar]
  139. Yu Y. G., Turner G. E., Weiss R. L. Acetylglutamate synthase from Neurospora crassa: structure and regulation of expression. Mol Microbiol. 1996 Nov;22(3):545–554. doi: 10.1046/j.1365-2958.1996.1321494.x. [DOI] [PubMed] [Google Scholar]
  140. Zollner H. Regulation of the n-acetylglutamate content of rat hepatocytes by the glutamate concentration. Adv Exp Med Biol. 1982;153:197–205. doi: 10.1007/978-1-4757-6903-6_25. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES