Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 15;372(Pt 3):695–702. doi: 10.1042/BJ20030061

Arachidonate release and prostaglandin production by group IVC phospholipase A2 (cytosolic phospholipase A2gamma).

Makoto Murakami 1, Seiko Masuda 1, Ichiro Kudo 1
PMCID: PMC1223431  PMID: 12611587

Abstract

While the role of the group IVA Ca(2+)-dependent cytosolic phospholipase A(2)alpha (cPLA(2)alpha) in arachidonic acid (AA) metabolism has been well documented, that of its paralogue, Ca(2+)-independent group IVC PLA(2) (cPLA(2)gamma), has remained uncertain. Here we show, using a transfection strategy, that cPLA(2)gamma has the ability to increase the spontaneous and stimulus-induced release of cellular fatty acids. The AA released by cPLA(2)gamma was metabolized further to prostaglandin E(2) via cyclo-oxygenase-1 (COX-1) in the immediate response, and via COX-2 in the delayed response. Mutation of the putative catalytic-centre residue Ser(82) abrogated the AA-releasing function of cPLA(2)gamma both in vitro and in vivo. Confocal microscopy revealed that cPLA(2)gamma was distributed in the perinuclear endoplasmic reticulum membranes. Mutating the C-terminal prenylation site of cPLA(2)gamma abrogated its intracellular membrane localization and cellular AA-releasing function, without reducing its enzyme activity in vitro. Our results indicate that cPLA(2)gamma is the second cPLA(2) enzyme that contributes to cellular AA metabolism and phospholipid remodelling under appropriate conditions.

Full Text

The Full Text of this article is available as a PDF (256.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alory C., Balch W. E. Molecular basis for Rab prenylation. J Cell Biol. 2000 Jul 10;150(1):89–103. doi: 10.1083/jcb.150.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asai Kenji, Hirabayashi Tetsuya, Houjou Toshiaki, Uozumi Naonori, Taguchi Ryo, Shimizu Takao. Human group IVC phospholipase A2 (cPLA2gamma). Roles in the membrane remodeling and activation induced by oxidative stress. J Biol Chem. 2002 Dec 26;278(10):8809–8814. doi: 10.1074/jbc.M212117200. [DOI] [PubMed] [Google Scholar]
  3. Bartoli F., Lin H. K., Ghomashchi F., Gelb M. H., Jain M. K., Apitz-Castro R. Tight binding inhibitors of 85-kDa phospholipase A2 but not 14-kDa phospholipase A2 inhibit release of free arachidonate in thrombin-stimulated human platelets. J Biol Chem. 1994 Jun 3;269(22):15625–15630. [PubMed] [Google Scholar]
  4. Bonventre J. V., Huang Z., Taheri M. R., O'Leary E., Li E., Moskowitz M. A., Sapirstein A. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature. 1997 Dec 11;390(6660):622–625. doi: 10.1038/37635. [DOI] [PubMed] [Google Scholar]
  5. Clark J. D., Lin L. L., Kriz R. W., Ramesha C. S., Sultzman L. A., Lin A. Y., Milona N., Knopf J. L. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP. Cell. 1991 Jun 14;65(6):1043–1051. doi: 10.1016/0092-8674(91)90556-e. [DOI] [PubMed] [Google Scholar]
  6. Das Sudipto, Cho Wonhwa. Roles of catalytic domain residues in interfacial binding and activation of group IV cytosolic phospholipase A2. J Biol Chem. 2002 Apr 15;277(26):23838–23846. doi: 10.1074/jbc.M202322200. [DOI] [PubMed] [Google Scholar]
  7. Evans J. H., Spencer D. M., Zweifach A., Leslie C. C. Intracellular calcium signals regulating cytosolic phospholipase A2 translocation to internal membranes. J Biol Chem. 2001 May 24;276(32):30150–30160. doi: 10.1074/jbc.M100943200. [DOI] [PubMed] [Google Scholar]
  8. Figueroa C., Taylor J., Vojtek A. B. Prenylated Rab acceptor protein is a receptor for prenylated small GTPases. J Biol Chem. 2001 May 2;276(30):28219–28225. doi: 10.1074/jbc.M101763200. [DOI] [PubMed] [Google Scholar]
  9. Gorvel J. P., Chavrier P., Zerial M., Gruenberg J. rab5 controls early endosome fusion in vitro. Cell. 1991 Mar 8;64(5):915–925. doi: 10.1016/0092-8674(91)90316-q. [DOI] [PubMed] [Google Scholar]
  10. Hefner Y., Borsch-Haubold A. G., Murakami M., Wilde J. I., Pasquet S., Schieltz D., Ghomashchi F., Yates J. R., 3rd, Armstrong C. G., Paterson A. Serine 727 phosphorylation and activation of cytosolic phospholipase A2 by MNK1-related protein kinases. J Biol Chem. 2000 Dec 1;275(48):37542–37551. doi: 10.1074/jbc.M003395200. [DOI] [PubMed] [Google Scholar]
  11. Kudo Ichiro, Murakami Makoto. Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat. 2002 Aug;68-69:3–58. doi: 10.1016/s0090-6980(02)00020-5. [DOI] [PubMed] [Google Scholar]
  12. Kulkarni Shilpa, Das Sudipto, Funk Colin D., Murray Diana, Cho Wonhwa. Molecular basis of the specific subcellular localization of the C2-like domain of 5-lipoxygenase. J Biol Chem. 2002 Jan 16;277(15):13167–13174. doi: 10.1074/jbc.M112393200. [DOI] [PubMed] [Google Scholar]
  13. Leslie C. C. Kinetic properties of a high molecular mass arachidonoyl-hydrolyzing phospholipase A2 that exhibits lysophospholipase activity. J Biol Chem. 1991 Jun 15;266(17):11366–11371. [PubMed] [Google Scholar]
  14. Lin L. L., Wartmann M., Lin A. Y., Knopf J. L., Seth A., Davis R. J. cPLA2 is phosphorylated and activated by MAP kinase. Cell. 1993 Jan 29;72(2):269–278. doi: 10.1016/0092-8674(93)90666-e. [DOI] [PubMed] [Google Scholar]
  15. Lio Y. C., Reynolds L. J., Balsinde J., Dennis E. A. Irreversible inhibition of Ca(2+)-independent phospholipase A2 by methyl arachidonyl fluorophosphonate. Biochim Biophys Acta. 1996 Jul 12;1302(1):55–60. doi: 10.1016/0005-2760(96)00002-1. [DOI] [PubMed] [Google Scholar]
  16. Lykidis A., Wang J., Karim M. A., Jackowski S. Overexpression of a mammalian ethanolamine-specific kinase accelerates the CDP-ethanolamine pathway. J Biol Chem. 2000 Oct 23;276(3):2174–2179. doi: 10.1074/jbc.M008794200. [DOI] [PubMed] [Google Scholar]
  17. Mayorga L. S., Colombo M. I., Lennartz M., Brown E. J., Rahman K. H., Weiss R., Lennon P. J., Stahl P. D. Inhibition of endosome fusion by phospholipase A2 (PLA2) inhibitors points to a role for PLA2 in endocytosis. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10255–10259. doi: 10.1073/pnas.90.21.10255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Murakami M., Kambe T., Shimbara S., Higashino K., Hanasaki K., Arita H., Horiguchi M., Arita M., Arai H., Inoue K. Different functional aspects of the group II subfamily (Types IIA and V) and type X secretory phospholipase A(2)s in regulating arachidonic acid release and prostaglandin generation. Implications of cyclooxygenase-2 induction and phospholipid scramblase-mediated cellular membrane perturbation. J Biol Chem. 1999 Oct 29;274(44):31435–31444. doi: 10.1074/jbc.274.44.31435. [DOI] [PubMed] [Google Scholar]
  19. Murakami M., Kambe T., Shimbara S., Kudo I. Functional coupling between various phospholipase A2s and cyclooxygenases in immediate and delayed prostanoid biosynthetic pathways. J Biol Chem. 1999 Jan 29;274(5):3103–3115. doi: 10.1074/jbc.274.5.3103. [DOI] [PubMed] [Google Scholar]
  20. Murakami M., Kambe T., Shimbara S., Yamamoto S., Kuwata H., Kudo I. Functional association of type IIA secretory phospholipase A(2) with the glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan in the cyclooxygenase-2-mediated delayed prostanoid-biosynthetic pathway. J Biol Chem. 1999 Oct 15;274(42):29927–29936. doi: 10.1074/jbc.274.42.29927. [DOI] [PubMed] [Google Scholar]
  21. Murakami M., Kudo I. Diversity and regulatory functions of mammalian secretory phospholipase A2s. Adv Immunol. 2001;77:163–194. doi: 10.1016/s0065-2776(01)77017-4. [DOI] [PubMed] [Google Scholar]
  22. Murakami M., Kuwata H., Amakasu Y., Shimbara S., Nakatani Y., Atsumi G., Kudo I. Prostaglandin E2 amplifies cytosolic phospholipase A2- and cyclooxygenase-2-dependent delayed prostaglandin E2 generation in mouse osteoblastic cells. Enhancement by secretory phospholipase A2. J Biol Chem. 1997 Aug 8;272(32):19891–19897. doi: 10.1074/jbc.272.32.19891. [DOI] [PubMed] [Google Scholar]
  23. Murakami M., Shimbara S., Kambe T., Kuwata H., Winstead M. V., Tischfield J. A., Kudo I. The functions of five distinct mammalian phospholipase A2S in regulating arachidonic acid release. Type IIa and type V secretory phospholipase A2S are functionally redundant and act in concert with cytosolic phospholipase A2. J Biol Chem. 1998 Jun 5;273(23):14411–14423. doi: 10.1074/jbc.273.23.14411. [DOI] [PubMed] [Google Scholar]
  24. Muthalif M. M., Hefner Y., Canaan S., Harper J., Zhou H., Parmentier J. H., Aebersold R., Gelb M. H., Malik K. U. Functional interaction of calcium-/calmodulin-dependent protein kinase II and cytosolic phospholipase A(2). J Biol Chem. 2001 Jul 30;276(43):39653–39660. doi: 10.1074/jbc.M103136200. [DOI] [PubMed] [Google Scholar]
  25. Nagase T., Uozumi N., Ishii S., Kume K., Izumi T., Ouchi Y., Shimizu T. Acute lung injury by sepsis and acid aspiration: a key role for cytosolic phospholipase A2. Nat Immunol. 2000 Jul;1(1):42–46. doi: 10.1038/76897. [DOI] [PubMed] [Google Scholar]
  26. Nalefski E. A., McDonagh T., Somers W., Seehra J., Falke J. J., Clark J. D. Independent folding and ligand specificity of the C2 calcium-dependent lipid binding domain of cytosolic phospholipase A2. J Biol Chem. 1998 Jan 16;273(3):1365–1372. doi: 10.1074/jbc.273.3.1365. [DOI] [PubMed] [Google Scholar]
  27. Novick P., Zerial M. The diversity of Rab proteins in vesicle transport. Curr Opin Cell Biol. 1997 Aug;9(4):496–504. doi: 10.1016/s0955-0674(97)80025-7. [DOI] [PubMed] [Google Scholar]
  28. Pfeffer S. R. Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol. 2001 Dec;11(12):487–491. doi: 10.1016/s0962-8924(01)02147-x. [DOI] [PubMed] [Google Scholar]
  29. Pickard R. T., Strifler B. A., Kramer R. M., Sharp J. D. Molecular cloning of two new human paralogs of 85-kDa cytosolic phospholipase A2. J Biol Chem. 1999 Mar 26;274(13):8823–8831. doi: 10.1074/jbc.274.13.8823. [DOI] [PubMed] [Google Scholar]
  30. Reynolds L. J., Hughes L. L., Louis A. I., Kramer R. M., Dennis E. A. Metal ion and salt effects on the phospholipase A2, lysophospholipase, and transacylase activities of human cytosolic phospholipase A2. Biochim Biophys Acta. 1993 Apr 23;1167(3):272–280. doi: 10.1016/0005-2760(93)90229-3. [DOI] [PubMed] [Google Scholar]
  31. Rusiñol A. E., Cui Z., Chen M. H., Vance J. E. A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J Biol Chem. 1994 Nov 4;269(44):27494–27502. [PubMed] [Google Scholar]
  32. Schievella A. R., Regier M. K., Smith W. L., Lin L. L. Calcium-mediated translocation of cytosolic phospholipase A2 to the nuclear envelope and endoplasmic reticulum. J Biol Chem. 1995 Dec 22;270(51):30749–30754. doi: 10.1074/jbc.270.51.30749. [DOI] [PubMed] [Google Scholar]
  33. Smeland T. E., Seabra M. C., Goldstein J. L., Brown M. S. Geranylgeranylated Rab proteins terminating in Cys-Ala-Cys, but not Cys-Cys, are carboxyl-methylated by bovine brain membranes in vitro. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10712–10716. doi: 10.1073/pnas.91.22.10712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Smith W. L., DeWitt D. L., Garavito R. M. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem. 2000;69:145–182. doi: 10.1146/annurev.biochem.69.1.145. [DOI] [PubMed] [Google Scholar]
  35. Stewart Allison, Ghosh Moumita, Spencer Diane M., Leslie Christina C. Enzymatic properties of human cytosolic phospholipase A(2)gamma. J Biol Chem. 2002 May 30;277(33):29526–29536. doi: 10.1074/jbc.M204856200. [DOI] [PubMed] [Google Scholar]
  36. Søgaard M., Tani K., Ye R. R., Geromanos S., Tempst P., Kirchhausen T., Rothman J. E., Söllner T. A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell. 1994 Sep 23;78(6):937–948. doi: 10.1016/0092-8674(94)90270-4. [DOI] [PubMed] [Google Scholar]
  37. Takaku K., Sonoshita M., Sasaki N., Uozumi N., Doi Y., Shimizu T., Taketo M. M. Suppression of intestinal polyposis in Apc(delta 716) knockout mice by an additional mutation in the cytosolic phospholipase A(2) gene. J Biol Chem. 2000 Nov 3;275(44):34013–34016. doi: 10.1074/jbc.C000585200. [DOI] [PubMed] [Google Scholar]
  38. Underwood K. W., Song C., Kriz R. W., Chang X. J., Knopf J. L., Lin L. L. A novel calcium-independent phospholipase A2, cPLA2-gamma, that is prenylated and contains homology to cPLA2. J Biol Chem. 1998 Aug 21;273(34):21926–21932. doi: 10.1074/jbc.273.34.21926. [DOI] [PubMed] [Google Scholar]
  39. Uozumi N., Kume K., Nagase T., Nakatani N., Ishii S., Tashiro F., Komagata Y., Maki K., Ikuta K., Ouchi Y. Role of cytosolic phospholipase A2 in allergic response and parturition. Nature. 1997 Dec 11;390(6660):618–622. doi: 10.1038/37622. [DOI] [PubMed] [Google Scholar]
  40. Zhang F. L., Casey P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem. 1996;65:241–269. doi: 10.1146/annurev.bi.65.070196.001325. [DOI] [PubMed] [Google Scholar]
  41. de Figueiredo P., Drecktrah D., Katzenellenbogen J. A., Strang M., Brown W. J. Evidence that phospholipase A2 activity is required for Golgi complex and trans Golgi network membrane tubulation. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8642–8647. doi: 10.1073/pnas.95.15.8642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. de Figueiredo P., Polizotto R. S., Drecktrah D., Brown W. J. Membrane tubule-mediated reassembly and maintenance of the Golgi complex is disrupted by phospholipase A2 antagonists. Mol Biol Cell. 1999 Jun;10(6):1763–1782. doi: 10.1091/mbc.10.6.1763. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES