Abstract
The genus Amycolatopsis is a member of the phylogenetic group nocardioform actinomycetes, which also includes the genus Mycobacterium. Members of this group have a characteristic cell envelope structure, dominated by various complex lipids and polysaccharides. Amongst these, lipoglycans are of particular interest since mycobacterial lipoarabinomannans are important immunomodulatory molecules. In this study we report the isolation and structural characterization of Amycolatopsis sulphurea lipoarabinomannan, designated AsuLAM. SDS/PAGE analysis revealed that AsuLAM was of an intermediate size between Mycobacterium tuberculosis lipoarabinomannan and lipomannan, confirmed by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry that predicted an average molecular mass of 10 kDa. Using a range of chemical degradations, NMR experiments and capillary electrophoresis analysis, AsuLAM was revealed as an original structure. The mannosyl-phosphatidyl- myo -inositol anchor exhibits a single acyl-form, characterized by a diacylated glycerol moiety, and contains, as one of the main fatty acids, 14-methyl-pentadecanoate, a characteristic fatty acid of the Amycolatopsis genus. AsuLAM also contains a short mannan domain; and is dominated by a multi-branched arabinan domain, composed of an (alpha1-->5)-Ara f (arabinofuranose) chain substituted, predominately at the O -2 position, by a single beta-Ara f. The arabinan domain is further elaborated by manno-oligosaccharide caps, with around one per molecule. This is the first description of manno-oligosaccharide caps found in a non-mycobacterial LAM. AsuLAM was unable to induce the production of the pro-inflammatory cytokine tumour necrosis factor alpha when tested with human or murine macrophage cell lines, reinforcing the paradigm that mannose-capped LAM are poor inducers of pro-inflammatory cytokines.
Full Text
The Full Text of this article is available as a PDF (182.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams L. B., Fukutomi Y., Krahenbuhl J. L. Regulation of murine macrophage effector functions by lipoarabinomannan from mycobacterial strains with different degrees of virulence. Infect Immun. 1993 Oct;61(10):4173–4181. doi: 10.1128/iai.61.10.4173-4181.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brennan P. J., Nikaido H. The envelope of mycobacteria. Annu Rev Biochem. 1995;64:29–63. doi: 10.1146/annurev.bi.64.070195.000333. [DOI] [PubMed] [Google Scholar]
- Chatterjee D., Hunter S. W., McNeil M., Brennan P. J. Lipoarabinomannan. Multiglycosylated form of the mycobacterial mannosylphosphatidylinositols. J Biol Chem. 1992 Mar 25;267(9):6228–6233. [PubMed] [Google Scholar]
- Chatterjee D., Khoo K. H. Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects. Glycobiology. 1998 Feb;8(2):113–120. doi: 10.1093/glycob/8.2.113. [DOI] [PubMed] [Google Scholar]
- Chatterjee D., Lowell K., Rivoire B., McNeil M. R., Brennan P. J. Lipoarabinomannan of Mycobacterium tuberculosis. Capping with mannosyl residues in some strains. J Biol Chem. 1992 Mar 25;267(9):6234–6239. [PubMed] [Google Scholar]
- Delmas C., Gilleron M., Brando T., Vercellone A., Gheorghui M., Rivière M., Puzo G. Comparative structural study of the mannosylated-lipoarabinomannans from Mycobacterium bovis BCG vaccine strains: characterization and localization of succinates. Glycobiology. 1997 Sep;7(6):811–817. doi: 10.1093/glycob/7.6.811. [DOI] [PubMed] [Google Scholar]
- Espevik T., Nissen-Meyer J. A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes. J Immunol Methods. 1986 Dec 4;95(1):99–105. doi: 10.1016/0022-1759(86)90322-4. [DOI] [PubMed] [Google Scholar]
- Flaherty C., Minnikin D. E., Sutcliffe I. C. A chemotaxonomic study of the lipoglycans of Rhodococcus rhodnii N445 (NCIMB 11279). Zentralbl Bakteriol. 1996 Sep;285(1):11–19. doi: 10.1016/s0934-8840(96)80017-x. [DOI] [PubMed] [Google Scholar]
- Flaherty C., Sutcliffe I. C. Identification of a lipoarabinomannan-like lipoglycan in Gordonia rubropertincta. Syst Appl Microbiol. 1999 Dec;22(4):530–533. doi: 10.1016/S0723-2020(99)80005-8. [DOI] [PubMed] [Google Scholar]
- Garton Natalie J., Gilleron Martine, Brando Thérèse, Dan Han-Hong, Giguère Steeve, Puzo Germain, Prescott John F., Sutcliffe Iain C. A novel lipoarabinomannan from the equine pathogen Rhodococcus equi. Structure and effect on macrophage cytokine production. J Biol Chem. 2002 Jun 18;277(35):31722–31733. doi: 10.1074/jbc.M203008200. [DOI] [PubMed] [Google Scholar]
- Gilleron M., Bala L., Brando T., Vercellone A., Puzo G. Mycobacterium tuberculosis H37Rv parietal and cellular lipoarabinomannans. Characterization of the acyl- and glyco-forms. J Biol Chem. 2000 Jan 7;275(1):677–684. doi: 10.1074/jbc.275.1.677. [DOI] [PubMed] [Google Scholar]
- Gilleron M., Himoudi N., Adam O., Constant P., Venisse A., Rivière M., Puzo G. Mycobacterium smegmatis phosphoinositols-glyceroarabinomannans. Structure and localization of alkali-labile and alkali-stable phosphoinositides. J Biol Chem. 1997 Jan 3;272(1):117–124. doi: 10.1074/jbc.272.1.117. [DOI] [PubMed] [Google Scholar]
- Goodfellow M. The taxonomic status of Rhodococcus equi. Vet Microbiol. 1987 Aug;14(3):205–209. doi: 10.1016/0378-1135(87)90106-4. [DOI] [PubMed] [Google Scholar]
- Gordon R. E., Mishra S. K., Barnett D. A. Some bits and pieces of the genus Nocardia: N. carnea, N. vaccinii, N. transvalensis, N. orientalis and N. aerocolonigenes. J Gen Microbiol. 1978 Nov;109(1):69–78. doi: 10.1099/00221287-109-1-69. [DOI] [PubMed] [Google Scholar]
- Guerardel Yann, Maes Emmanuel, Elass Elisabeth, Leroy Yves, Timmerman Philippe, Besra Gurdyal S., Locht Camille, Strecker Gérard, Kremer Laurent. Structural study of lipomannan and lipoarabinomannan from Mycobacterium chelonae. Presence of unusual components with alpha 1,3-mannopyranose side chains. J Biol Chem. 2002 Jun 12;277(34):30635–30648. doi: 10.1074/jbc.M204398200. [DOI] [PubMed] [Google Scholar]
- Khoo K. H., Dell A., Morris H. R., Brennan P. J., Chatterjee D. Inositol phosphate capping of the nonreducing termini of lipoarabinomannan from rapidly growing strains of Mycobacterium. J Biol Chem. 1995 May 26;270(21):12380–12389. doi: 10.1074/jbc.270.21.12380. [DOI] [PubMed] [Google Scholar]
- Knutson K. L., Hmama Z., Herrera-Velit P., Rochford R., Reiner N. E. Lipoarabinomannan of Mycobacterium tuberculosis promotes protein tyrosine dephosphorylation and inhibition of mitogen-activated protein kinase in human mononuclear phagocytes. Role of the Src homology 2 containing tyrosine phosphatase 1. J Biol Chem. 1998 Jan 2;273(1):645–652. doi: 10.1074/jbc.273.1.645. [DOI] [PubMed] [Google Scholar]
- Lee S. D., Hah Y. C. Amycolatopsis albidoflavus sp. nov. Int J Syst Evol Microbiol. 2001 Mar;51(Pt 2):645–650. doi: 10.1099/00207713-51-2-645. [DOI] [PubMed] [Google Scholar]
- Ludwiczak Pascal, Gilleron Martine, Bordat Yann, Martin Carlos, Gicquel Brigitte, Puzo Germain. Mycobacterium tuberculosis phoP mutant: lipoarabinomannan molecular structure. Microbiology. 2002 Oct;148(Pt 10):3029–3037. doi: 10.1099/00221287-148-10-3029. [DOI] [PubMed] [Google Scholar]
- Matsumoto N., Tsuchida T., Umekita M., Kinoshita N., Iinuma H., Sawa T., Hamada M., Takeuchi T. Epoxyquinomicins A, B, C and D, new antibiotics from Amycolatopsis. I. Taxonomy, fermentation, isolation and antimicrobial activities. J Antibiot (Tokyo) 1997 Nov;50(11):900–905. doi: 10.7164/antibiotics.50.900. [DOI] [PubMed] [Google Scholar]
- Means T. K., Lien E., Yoshimura A., Wang S., Golenbock D. T., Fenton M. J. The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J Immunol. 1999 Dec 15;163(12):6748–6755. [PubMed] [Google Scholar]
- Mishra S. K., Gordon R. E., Barnett D. A. Identification of nocardiae and streptomycetes of medical importance. J Clin Microbiol. 1980 Jun;11(6):728–736. doi: 10.1128/jcm.11.6.728-736.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nigou J., Gilleron M., Cahuzac B., Bounéry J. D., Herold M., Thurnher M., Puzo G. The phosphatidyl-myo-inositol anchor of the lipoarabinomannans from Mycobacterium bovis bacillus Calmette Guérin. Heterogeneity, structure, and role in the regulation of cytokine secretion. J Biol Chem. 1997 Sep 12;272(37):23094–23103. doi: 10.1074/jbc.272.37.23094. [DOI] [PubMed] [Google Scholar]
- Nigou J., Gilleron M., Puzo G. Lipoarabinomannans: characterization of the multiacylated forms of the phosphatidyl-myo-inositol anchor by NMR spectroscopy. Biochem J. 1999 Feb 1;337(Pt 3):453–460. [PMC free article] [PubMed] [Google Scholar]
- Nigou J., Vercellone A., Puzo G. New structural insights into the molecular deciphering of mycobacterial lipoglycan binding to C-type lectins: lipoarabinomannan glycoform characterization and quantification by capillary electrophoresis at the subnanomole level. J Mol Biol. 2000 Jun 23;299(5):1353–1362. doi: 10.1006/jmbi.2000.3821. [DOI] [PubMed] [Google Scholar]
- Nigou J., Zelle-Rieser C., Gilleron M., Thurnher M., Puzo G. Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol. 2001 Jun 15;166(12):7477–7485. doi: 10.4049/jimmunol.166.12.7477. [DOI] [PubMed] [Google Scholar]
- Nigou Jérôme, Gilleron Martine, Rojas Mauricio, García Luis F., Thurnher Martin, Puzo Germain. Mycobacterial lipoarabinomannans: modulators of dendritic cell function and the apoptotic response. Microbes Infect. 2002 Jul;4(9):945–953. doi: 10.1016/s1286-4579(02)01621-0. [DOI] [PubMed] [Google Scholar]
- Sutcliffe I. C. Characterisation of a lipomannan lipoglycan from the mycolic acid containing actinomycete Dietzia maris. Antonie Van Leeuwenhoek. 2000 Aug;78(2):195–201. doi: 10.1023/a:1026562610490. [DOI] [PubMed] [Google Scholar]
- Sutcliffe I. C. Identification of a lipoarabinomannan-like lipoglycan in Corynebacterium matruchotii. Arch Oral Biol. 1995 Dec;40(12):1119–1124. doi: 10.1016/0003-9969(95)00086-0. [DOI] [PubMed] [Google Scholar]
- Treumann Achim, Xidong Feng, McDonnell Liam, Derrick Peter J., Ashcroft Alison E., Chatterjee Delphi, Homans Steve W. 5-Methylthiopentose: a new substituent on lipoarabinomannan in Mycobacterium tuberculosis. J Mol Biol. 2002 Feb 8;316(1):89–100. doi: 10.1006/jmbi.2001.5317. [DOI] [PubMed] [Google Scholar]
- Tsuchida T., Inuma H., Kinoshita N., Ikeda T., Sawa T., Hamada M., Takeuchi T. Azicemicins A and B, a new antimicrobial agent produced by Amycolatopsis. I. Taxonomy, fermentation, isolation, characterization and biological activities. J Antibiot (Tokyo) 1995 Mar;48(3):217–221. doi: 10.7164/antibiotics.48.217. [DOI] [PubMed] [Google Scholar]
- Venisse A., Berjeaud J. M., Chaurand P., Gilleron M., Puzo G. Structural features of lipoarabinomannan from Mycobacterium bovis BCG. Determination of molecular mass by laser desorption mass spectrometry. J Biol Chem. 1993 Jun 15;268(17):12401–12411. [PubMed] [Google Scholar]
- Vercellone A., Nigou J., Puzo G. Relationships between the structure and the roles of lipoarabinomannans and related glycoconjugates in tuberculosis pathogenesis. Front Biosci. 1998 Aug 6;3:e149–e163. doi: 10.2741/a372. [DOI] [PubMed] [Google Scholar]