Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 15;372(Pt 3):799–809. doi: 10.1042/BJ20021573

Sequence motifs of tissue inhibitor of metalloproteinases 2 (TIMP-2) determining progelatinase A (proMMP-2) binding and activation by membrane-type metalloproteinase 1 (MT1-MMP).

Joanna R Worley 1, Philip B Thompkins 1, Meng H Lee 1, Mike Hutton 1, Paul Soloway 1, Dylan R Edwards 1, Gillian Murphy 1, Vera Knäuper 1
PMCID: PMC1223438  PMID: 12630911

Abstract

Fundamental cellular processes including angiogenesis and cell migration require a proteolytic cascade driven by interactions of membrane-type matrix metalloproteinase 1 (MT1-MMP) and progelatinase A (proMMP-2) that are dependent on the presence of tissue inhibitor of metalloproteinases 2 (TIMP-2). There are unique interactions between TIMP-2 and MT1-MMP, which we have previously defined, and here we identify TIMP-2 sequence motifs specific for proMMP-2 binding in the context of its activation by MT1-MMP. A TIMP-2 mutant encoding the C-terminal domain of TIMP-4 showed loss of proMMP-2 activation, indicating that the C-terminal domain of TIMP-2 is important in establishing the trimolecular complex between MT1-MMP, TIMP-2 and proMMP-2. This was confirmed by analysis of a TIMP-4 mutant encoding the C-terminal domain of TIMP-2, which formed a trimolecular complex and promoted proMMP-2 processing to the intermediate form. Mutants encoding TIMP-4 from Cys(1) to Leu(185) and partial tail sequence of TIMP-2 showed some gain of activating capability relative to TIMP-4. The identified residues were subsequently mutated in TIMP-2 (E(192)-D(193) to I(192)-Q(193)) and this inhibitor showed a significantly reduced ability to facilitate proMMP-2 processing by MT1-MMP. Furthermore, the tail-deletion mutant Delta(186-194)TIMP-2 was completely incapable of promoting proMMP-2 activation by MT1-MMP. Thus the C-terminal tail residues of TIMP-2 are important determinants for stable trimolecular complex formation between TIMP-2, proMMP-2 and MT1-MMP and play an important role in MT1-MMP-mediated processing to the intermediate and final active forms of MMP-2 at the cell surface.

Full Text

The Full Text of this article is available as a PDF (307.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apte S. S., Mattei M. G., Olsen B. R. Cloning of the cDNA encoding human tissue inhibitor of metalloproteinases-3 (TIMP-3) and mapping of the TIMP3 gene to chromosome 22. Genomics. 1994 Jan 1;19(1):86–90. doi: 10.1006/geno.1994.1016. [DOI] [PubMed] [Google Scholar]
  2. Atkinson S. J., Crabbe T., Cowell S., Ward R. V., Butler M. J., Sato H., Seiki M., Reynolds J. J., Murphy G. Intermolecular autolytic cleavage can contribute to the activation of progelatinase A by cell membranes. J Biol Chem. 1995 Dec 22;270(51):30479–30485. doi: 10.1074/jbc.270.51.30479. [DOI] [PubMed] [Google Scholar]
  3. Baker A. H., Ahonen M., Kähäri V. M. Potential applications of tissue inhibitor of metalloproteinase (TIMP) overexpression for cancer gene therapy. Adv Exp Med Biol. 2000;465:469–483. doi: 10.1007/0-306-46817-4_41. [DOI] [PubMed] [Google Scholar]
  4. Balbín M., Fueyo A., Knäuper V., Pendás A. M., López J. M., Jiménez M. G., Murphy G., López-Otín C. Collagenase 2 (MMP-8) expression in murine tissue-remodeling processes. Analysis of its potential role in postpartum involution of the uterus. J Biol Chem. 1998 Sep 11;273(37):23959–23968. doi: 10.1074/jbc.273.37.23959. [DOI] [PubMed] [Google Scholar]
  5. Bigg H. F., Morrison C. J., Butler G. S., Bogoyevitch M. A., Wang Z., Soloway P. D., Overall C. M. Tissue inhibitor of metalloproteinases-4 inhibits but does not support the activation of gelatinase A via efficient inhibition of membrane type 1-matrix metalloproteinase. Cancer Res. 2001 May 1;61(9):3610–3618. [PubMed] [Google Scholar]
  6. Bigg H. F., Shi Y. E., Liu Y. E., Steffensen B., Overall C. M. Specific, high affinity binding of tissue inhibitor of metalloproteinases-4 (TIMP-4) to the COOH-terminal hemopexin-like domain of human gelatinase A. TIMP-4 binds progelatinase A and the COOH-terminal domain in a similar manner to TIMP-2. J Biol Chem. 1997 Jun 13;272(24):15496–15500. doi: 10.1074/jbc.272.24.15496. [DOI] [PubMed] [Google Scholar]
  7. Boone T. C., Johnson M. J., De Clerck Y. A., Langley K. E. cDNA cloning and expression of a metalloproteinase inhibitor related to tissue inhibitor of metalloproteinases. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2800–2804. doi: 10.1073/pnas.87.7.2800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brew K., Dinakarpandian D., Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta. 2000 Mar 7;1477(1-2):267–283. doi: 10.1016/s0167-4838(99)00279-4. [DOI] [PubMed] [Google Scholar]
  9. Butler G. S., Butler M. J., Atkinson S. J., Will H., Tamura T., Schade van Westrum S., Crabbe T., Clements J., d'Ortho M. P., Murphy G. The TIMP2 membrane type 1 metalloproteinase "receptor" regulates the concentration and efficient activation of progelatinase A. A kinetic study. J Biol Chem. 1998 Jan 9;273(2):871–880. doi: 10.1074/jbc.273.2.871. [DOI] [PubMed] [Google Scholar]
  10. Butler G. S., Hutton M., Wattam B. A., Williamson R. A., Knäuper V., Willenbrock F., Murphy G. The specificity of TIMP-2 for matrix metalloproteinases can be modified by single amino acid mutations. J Biol Chem. 1999 Jul 16;274(29):20391–20396. doi: 10.1074/jbc.274.29.20391. [DOI] [PubMed] [Google Scholar]
  11. Butler G. S., Will H., Atkinson S. J., Murphy G. Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur J Biochem. 1997 Mar 1;244(2):653–657. doi: 10.1111/j.1432-1033.1997.t01-1-00653.x. [DOI] [PubMed] [Google Scholar]
  12. Caterina J. J., Yamada S., Caterina N. C., Longenecker G., Holmbäck K., Shi J., Yermovsky A. E., Engler J. A., Birkedal-Hansen H. Inactivating mutation of the mouse tissue inhibitor of metalloproteinases-2(Timp-2) gene alters proMMP-2 activation. J Biol Chem. 2000 Aug 25;275(34):26416–26422. doi: 10.1074/jbc.M001271200. [DOI] [PubMed] [Google Scholar]
  13. Crabbe T., Zucker S., Cockett M. I., Willenbrock F., Tickle S., O'Connell J. P., Scothern J. M., Murphy G., Docherty A. J. Mutation of the active site glutamic acid of human gelatinase A: effects on latency, catalysis, and the binding of tissue inhibitor of metalloproteinases-1. Biochemistry. 1994 May 31;33(21):6684–6690. doi: 10.1021/bi00187a039. [DOI] [PubMed] [Google Scholar]
  14. Docherty A. J., Lyons A., Smith B. J., Wright E. M., Stephens P. E., Harris T. J., Murphy G., Reynolds J. J. Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature. 1985 Nov 7;318(6041):66–69. doi: 10.1038/318066a0. [DOI] [PubMed] [Google Scholar]
  15. Edwards D. R., Murphy G. Cancer. Proteases--invasion and more. Nature. 1998 Aug 6;394(6693):527–528. doi: 10.1038/28961. [DOI] [PubMed] [Google Scholar]
  16. Greene J., Wang M., Liu Y. E., Raymond L. A., Rosen C., Shi Y. E. Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J Biol Chem. 1996 Nov 29;271(48):30375–30380. doi: 10.1074/jbc.271.48.30375. [DOI] [PubMed] [Google Scholar]
  17. Hembry R. M., Murphy G., Reynolds J. J. Immunolocalization of tissue inhibitor of metalloproteinases (TIMP) in human cells. Characterization and use of a specific antiserum. J Cell Sci. 1985 Feb;73:105–119. doi: 10.1242/jcs.73.1.105. [DOI] [PubMed] [Google Scholar]
  18. Hernandez-Barrantes S., Shimura Y., Soloway P. D., Sang Q. A., Fridman R. Differential roles of TIMP-4 and TIMP-2 in pro-MMP-2 activation by MT1-MMP. Biochem Biophys Res Commun. 2001 Feb 16;281(1):126–130. doi: 10.1006/bbrc.2001.4323. [DOI] [PubMed] [Google Scholar]
  19. Hernandez-Barrantes S., Toth M., Bernardo M. M., Yurkova M., Gervasi D. C., Raz Y., Sang Q. A., Fridman R. Binding of active (57 kDa) membrane type 1-matrix metalloproteinase (MT1-MMP) to tissue inhibitor of metalloproteinase (TIMP)-2 regulates MT1-MMP processing and pro-MMP-2 activation. J Biol Chem. 2000 Apr 21;275(16):12080–12089. doi: 10.1074/jbc.275.16.12080. [DOI] [PubMed] [Google Scholar]
  20. Hutton M., Willenbrock F., Brocklehurst K., Murphy G. Kinetic analysis of the mechanism of interaction of full-length TIMP-2 and gelatinase A: evidence for the existence of a low-affinity intermediate. Biochemistry. 1998 Jul 14;37(28):10094–10098. doi: 10.1021/bi980616p. [DOI] [PubMed] [Google Scholar]
  21. Itoh T., Tanioka M., Yoshida H., Yoshioka T., Nishimoto H., Itohara S. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res. 1998 Mar 1;58(5):1048–1051. [PubMed] [Google Scholar]
  22. Kai Heidi S-T, Butler Georgina S., Morrison Charlotte J., King Angela E., Pelman Gayle R., Overall Christopher M. Utilization of a novel recombinant myoglobin fusion protein expression system to characterize the tissue inhibitor of metalloproteinase (TIMP)-4 and TIMP-2 C-terminal domain and tails by mutagenesis. The importance of acidic residues in binding the MMP-2 hemopexin C-domain. J Biol Chem. 2002 Oct 8;277(50):48696–48707. doi: 10.1074/jbc.M209177200. [DOI] [PubMed] [Google Scholar]
  23. Knight C. G., Willenbrock F., Murphy G. A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Lett. 1992 Jan 27;296(3):263–266. doi: 10.1016/0014-5793(92)80300-6. [DOI] [PubMed] [Google Scholar]
  24. Liu Y. E., Wang M., Greene J., Su J., Ullrich S., Li H., Sheng S., Alexander P., Sang Q. A., Shi Y. E. Preparation and characterization of recombinant tissue inhibitor of metalloproteinase 4 (TIMP-4). J Biol Chem. 1997 Aug 15;272(33):20479–20483. doi: 10.1074/jbc.272.33.20479. [DOI] [PubMed] [Google Scholar]
  25. Morgunova Ekaterina, Tuuttila Ari, Bergmann Ulrich, Tryggvason Karl. Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7414–7419. doi: 10.1073/pnas.102185399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morrison C. J., Butler G. S., Bigg H. F., Roberts C. R., Soloway P. D., Overall C. M. Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a TIMP-2-independent pathway. J Biol Chem. 2001 Oct 2;276(50):47402–47410. doi: 10.1074/jbc.M108643200. [DOI] [PubMed] [Google Scholar]
  27. Murphy G., Willenbrock F. Tissue inhibitors of matrix metalloendopeptidases. Methods Enzymol. 1995;248:496–510. doi: 10.1016/0076-6879(95)48032-3. [DOI] [PubMed] [Google Scholar]
  28. Nagase H., Woessner J. F., Jr Matrix metalloproteinases. J Biol Chem. 1999 Jul 30;274(31):21491–21494. doi: 10.1074/jbc.274.31.21491. [DOI] [PubMed] [Google Scholar]
  29. Overall C. M., King A. E., Sam D. K., Ong A. D., Lau T. T., Wallon U. M., DeClerck Y. A., Atherstone J. Identification of the tissue inhibitor of metalloproteinases-2 (TIMP-2) binding site on the hemopexin carboxyl domain of human gelatinase A by site-directed mutagenesis. The hierarchical role in binding TIMP-2 of the unique cationic clusters of hemopexin modules III and IV. J Biol Chem. 1999 Feb 12;274(7):4421–4429. doi: 10.1074/jbc.274.7.4421. [DOI] [PubMed] [Google Scholar]
  30. Sato H., Takino T., Okada Y., Cao J., Shinagawa A., Yamamoto E., Seiki M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 1994 Jul 7;370(6484):61–65. doi: 10.1038/370061a0. [DOI] [PubMed] [Google Scholar]
  31. Strongin A. Y., Collier I., Bannikov G., Marmer B. L., Grant G. A., Goldberg G. I. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem. 1995 Mar 10;270(10):5331–5338. doi: 10.1074/jbc.270.10.5331. [DOI] [PubMed] [Google Scholar]
  32. Toth M., Bernardo M. M., Gervasi D. C., Soloway P. D., Wang Z., Bigg H. F., Overall C. M., DeClerck Y. A., Tschesche H., Cher M. L. Tissue inhibitor of metalloproteinase (TIMP)-2 acts synergistically with synthetic matrix metalloproteinase (MMP) inhibitors but not with TIMP-4 to enhance the (Membrane type 1)-MMP-dependent activation of pro-MMP-2. J Biol Chem. 2000 Dec 29;275(52):41415–41423. doi: 10.1074/jbc.M006871200. [DOI] [PubMed] [Google Scholar]
  33. Wang Z., Juttermann R., Soloway P. D. TIMP-2 is required for efficient activation of proMMP-2 in vivo. J Biol Chem. 2000 Aug 25;275(34):26411–26415. doi: 10.1074/jbc.M001270200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ward R. V., Atkinson S. J., Slocombe P. M., Docherty A. J., Reynolds J. J., Murphy G. Tissue inhibitor of metalloproteinases-2 inhibits the activation of 72 kDa progelatinase by fibroblast membranes. Biochim Biophys Acta. 1991 Aug 30;1079(2):242–246. doi: 10.1016/0167-4838(91)90132-j. [DOI] [PubMed] [Google Scholar]
  35. Willenbrock F., Crabbe T., Slocombe P. M., Sutton C. W., Docherty A. J., Cockett M. I., O'Shea M., Brocklehurst K., Phillips I. R., Murphy G. The activity of the tissue inhibitors of metalloproteinases is regulated by C-terminal domain interactions: a kinetic analysis of the inhibition of gelatinase A. Biochemistry. 1993 Apr 27;32(16):4330–4337. doi: 10.1021/bi00067a023. [DOI] [PubMed] [Google Scholar]
  36. Williamson R. A., Bartels H., Murphy G., Freedman R. B. Folding and stability of the active N-terminal domain of tissue inhibitor of metalloproteinases-1 and -2. Protein Eng. 1994 Aug;7(8):1035–1040. doi: 10.1093/protein/7.8.1035. [DOI] [PubMed] [Google Scholar]
  37. Williamson R. A., Natalia D., Gee C. K., Murphy G., Carr M. D., Freedman R. B. Chemically and conformationally authentic active domain of human tissue inhibitor of metalloproteinases-2 refolded from bacterial inclusion bodies. Eur J Biochem. 1996 Oct 15;241(2):476–483. doi: 10.1111/j.1432-1033.1996.00476.x. [DOI] [PubMed] [Google Scholar]
  38. Zhou Z., Apte S. S., Soininen R., Cao R., Baaklini G. Y., Rauser R. W., Wang J., Cao Y., Tryggvason K. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4052–4057. doi: 10.1073/pnas.060037197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. d'Ortho M. P., Stanton H., Butler M., Atkinson S. J., Murphy G., Hembry R. M. MT1-MMP on the cell surface causes focal degradation of gelatin films. FEBS Lett. 1998 Jan 9;421(2):159–164. doi: 10.1016/s0014-5793(97)01555-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES