Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 15;372(Pt 3):897–903. doi: 10.1042/BJ20021530

The soluble ectodomain of RetC634Y inhibits both the wild-type and the constitutively active Ret.

Laura Cerchia 1, Domenico Libri 1, Maria Stella Carlomagno 1, Vittorio de Franciscis 1
PMCID: PMC1223439  PMID: 12630912

Abstract

Substitution of Cys-634 in the extracellular domain of the Ret tyrosine kinase receptor causes its dimerization and activation of its transforming potential. To gain further insight into the molecular basis leading to Ret activation we purified a mutant protein consisting of the entire ectodomain of the Ret carrying a Cys-634-->Tyr substitution (EC-Ret(C634Y)). The protein is glycosylated, like the native one, and is biologically active. By using an in vitro cell system we show that EC-Ret(C634Y) inhibits the membrane-bound receptor Ret(C634Y), interfering with its dimerization. Furthermore, we demonstrate that EC-Ret(C634Y) competes with the wild-type Ret receptor for ligand binding. The results presented support the notion of the possible involvment of glial cell line-derived neurotrophic factor (GDNF) with multiple endocrine neoplasia type 2A (MEN2A) tumours, and describe a useful tool for generating molecular mimetics directed towards specific mutations of the ret oncogene.

Full Text

The Full Text of this article is available as a PDF (217.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anders J., Kjar S., Ibáez C. F. Molecular modeling of the extracellular domain of the RET receptor tyrosine kinase reveals multiple cadherin-like domains and a calcium-binding site. J Biol Chem. 2001 Jul 9;276(38):35808–35817. doi: 10.1074/jbc.M104968200. [DOI] [PubMed] [Google Scholar]
  2. Angrist M., Bolk S., Thiel B., Puffenberger E. G., Hofstra R. M., Buys C. H., Cass D. T., Chakravarti A. Mutation analysis of the RET receptor tyrosine kinase in Hirschsprung disease. Hum Mol Genet. 1995 May;4(5):821–830. doi: 10.1093/hmg/4.5.821. [DOI] [PubMed] [Google Scholar]
  3. Califano D., D'Alessio A., Colucci-D'Amato G. L., De Vita G., Monaco C., Santelli G., Di Fiore P. P., Vecchio G., Fusco A., Santoro M. A potential pathogenetic mechanism for multiple endocrine neoplasia type 2 syndromes involves ret-induced impairment of terminal differentiation of neuroepithelial cells. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7933–7937. doi: 10.1073/pnas.93.15.7933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carlomagno F., Melillo R. M., Visconti R., Salvatore G., De Vita G., Lupoli G., Yu Y., Jing S., Vecchio G., Fusco A. Glial cell line-derived neurotrophic factor differentially stimulates ret mutants associated with the multiple endocrine neoplasia type 2 syndromes and Hirschsprung's disease. Endocrinology. 1998 Aug;139(8):3613–3619. doi: 10.1210/endo.139.8.6124. [DOI] [PubMed] [Google Scholar]
  5. Colucci-D'Amato G. L., D'Alessio A., Califano D., Cali G., Rizzo C., Nitsch L., Santelli G., de Franciscis V. Abrogation of nerve growth factor-induced terminal differentiation by ret oncogene involves perturbation of nuclear translocation of ERK. J Biol Chem. 2000 Jun 23;275(25):19306–19314. doi: 10.1074/jbc.275.25.19306. [DOI] [PubMed] [Google Scholar]
  6. Edery P., Lyonnet S., Mulligan L. M., Pelet A., Dow E., Abel L., Holder S., Nihoul-Fékété C., Ponder B. A., Munnich A. Mutations of the RET proto-oncogene in Hirschsprung's disease. Nature. 1994 Jan 27;367(6461):378–380. doi: 10.1038/367378a0. [DOI] [PubMed] [Google Scholar]
  7. Hansford J. R., Mulligan L. M. Multiple endocrine neoplasia type 2 and RET: from neoplasia to neurogenesis. J Med Genet. 2000 Nov;37(11):817–827. doi: 10.1136/jmg.37.11.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jing S., Wen D., Yu Y., Holst P. L., Luo Y., Fang M., Tamir R., Antonio L., Hu Z., Cupples R. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell. 1996 Jun 28;85(7):1113–1124. doi: 10.1016/s0092-8674(00)81311-2. [DOI] [PubMed] [Google Scholar]
  9. Le Hir H., Colucci-D'Amato L. G., Charlet-Berguerand N., Plouin P. F., Bertagna X., de Franciscis V., Thermes C. High levels of tyrosine phosphorylated proto-ret in sporadic phenochromocytomas. Cancer Res. 2000 Mar 1;60(5):1365–1370. [PubMed] [Google Scholar]
  10. Manié S., Santoro M., Fusco A., Billaud M. The RET receptor: function in development and dysfunction in congenital malformation. Trends Genet. 2001 Oct;17(10):580–589. doi: 10.1016/s0168-9525(01)02420-9. [DOI] [PubMed] [Google Scholar]
  11. Meng X., Lindahl M., Hyvönen M. E., Parvinen M., de Rooij D. G., Hess M. W., Raatikainen-Ahokas A., Sainio K., Rauvala H., Lakso M. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 2000 Feb 25;287(5457):1489–1493. doi: 10.1126/science.287.5457.1489. [DOI] [PubMed] [Google Scholar]
  12. Powers James F., Tsokas Panayiotis, Tischler Arthur S. The ret-Activating Ligand GDNF Is Differentiative and Not Mitogenic for Normal and Neoplastic Human Chromaffin Cells In Vitro. Endocr Pathol. 1998 Winter;9(1):325–331. doi: 10.1007/BF02739692. [DOI] [PubMed] [Google Scholar]
  13. Rigaut G., Shevchenko A., Rutz B., Wilm M., Mann M., Séraphin B. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol. 1999 Oct;17(10):1030–1032. doi: 10.1038/13732. [DOI] [PubMed] [Google Scholar]
  14. Romeo G., Ronchetto P., Luo Y., Barone V., Seri M., Ceccherini I., Pasini B., Bocciardi R., Lerone M., Käriäinen H. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung's disease. Nature. 1994 Jan 27;367(6461):377–378. doi: 10.1038/367377a0. [DOI] [PubMed] [Google Scholar]
  15. Saarma M. GDNF - a stranger in the TGF-beta superfamily? Eur J Biochem. 2000 Dec;267(24):6968–6971. doi: 10.1046/j.1432-1327.2000.01826.x. [DOI] [PubMed] [Google Scholar]
  16. Santoro M., Carlomagno F., Romano A., Bottaro D. P., Dathan N. A., Grieco M., Fusco A., Vecchio G., Matoskova B., Kraus M. H. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science. 1995 Jan 20;267(5196):381–383. doi: 10.1126/science.7824936. [DOI] [PubMed] [Google Scholar]
  17. Takahashi M., Iwashita T., Santoro M., Lyonnet S., Lenoir G. M., Billaud M. Co-segregation of MEN2 and Hirschsprung's disease: the same mutation of RET with both gain and loss-of-function? Hum Mutat. 1999;13(4):331–336. doi: 10.1002/(SICI)1098-1004(1999)13:4<331::AID-HUMU11>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  18. Takahashi M. The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev. 2001 Dec;12(4):361–373. doi: 10.1016/s1359-6101(01)00012-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES