Abstract
The dual specificity tyrosine phosphorylated and regulated kinase (DYRK) family of protein kinases is a group of evolutionarily conserved protein kinases that have been characterized as regulators of growth and development in mammals, Drosophila and lower eukaryotes. In the present study, we have characterized three splicing variants of DYRK1B (DYRK1B-p65, DYRK1B-p69 and DYRK1B-p75) with different expression patterns and enzymic activities. DYRK1B-p65 and DYRK1B-p69 exhibited similar, but not identical, patterns of expression in mouse tissues, with the highest protein levels found in the spleen, lung, brain, bladder, stomach and testis. In contrast, DYRK1B-p75 was detected specifically in skeletal muscles, in the neuronal cell line GT1-7 and also in differentiated, adipocyte-like 3T3-L1 cells, but not in undifferentiated 3T3-L1 preadipocytes. A comparison of the mouse and human Dyrk1b genomic and cDNA sequences defined the alternative splicing events that produce the variants of DYRK1B. In DYRK1B-p75, transcription starts with exon 1B instead of exon 1A, generating a new translation start, which extends the open reading frame by 60 codons. This gene structure suggests that alternative promoters direct the expression of DYRK1B-p69 and DYRK1B-p75. Both splicing variants exhibited kinase activity in vitro and contained phosphotyrosine when expressed in COS-7 cells. Owing to differential recognition of the 3'-splice site in exon 9, DYRK1B-p65 differs from DYRK1B-p69 by the absence of 40 amino acids within the catalytic domain. DYRK1B-p65 lacked kinase activity in vitro and did not contain phosphotyrosine. DYRK1B-p69 and DYRK1B-p75 stimulated reporter gene activity driven by the f or kh ead in r habdosarcoma (FKHR)-dependent glucose-6-phosphatase promoter more strongly when compared with DYRK1B-p65, indicating that the DYRK1B splicing variants exhibit functional differences.
Full Text
The Full Text of this article is available as a PDF (303.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altafaj X., Dierssen M., Baamonde C., Martí E., Visa J., Guimerà J., Oset M., González J. R., Flórez J., Fillat C. Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down's syndrome. Hum Mol Genet. 2001 Sep 1;10(18):1915–1923. doi: 10.1093/hmg/10.18.1915. [DOI] [PubMed] [Google Scholar]
- Barthel Andreas, Schmoll Dieter, Krüger Klaus-Dieter, Roth Richard A., Joost Hans-Georg. Regulation of the forkhead transcription factor FKHR (FOXO1a) by glucose starvation and AICAR, an activator of AMP-activated protein kinase. Endocrinology. 2002 Aug;143(8):3183–3186. doi: 10.1210/endo.143.8.8792. [DOI] [PubMed] [Google Scholar]
- Becker W., Joost H. G. Structural and functional characteristics of Dyrk, a novel subfamily of protein kinases with dual specificity. Prog Nucleic Acid Res Mol Biol. 1999;62:1–17. doi: 10.1016/s0079-6603(08)60503-6. [DOI] [PubMed] [Google Scholar]
- Becker W., Weber Y., Wetzel K., Eirmbter K., Tejedor F. J., Joost H. G. Sequence characteristics, subcellular localization, and substrate specificity of DYRK-related kinases, a novel family of dual specificity protein kinases. J Biol Chem. 1998 Oct 2;273(40):25893–25902. doi: 10.1074/jbc.273.40.25893. [DOI] [PubMed] [Google Scholar]
- Ewton Daina Z., Lee Kangmoon, Deng Xiaobing, Lim Seunghwan, Friedman Eileen. Rapid turnover of cell-cycle regulators found in Mirk/dyrk1B transfectants. Int J Cancer. 2003 Jan 1;103(1):21–28. doi: 10.1002/ijc.10743. [DOI] [PubMed] [Google Scholar]
- Guimera J., Casas C., Estivill X., Pritchard M. Human minibrain homologue (MNBH/DYRK1): characterization, alternative splicing, differential tissue expression, and overexpression in Down syndrome. Genomics. 1999 May 1;57(3):407–418. doi: 10.1006/geno.1999.5775. [DOI] [PubMed] [Google Scholar]
- Guimerá J., Casas C., Pucharcòs C., Solans A., Domènech A., Planas A. M., Ashley J., Lovett M., Estivill X., Pritchard M. A. A human homologue of Drosophila minibrain (MNB) is expressed in the neuronal regions affected in Down syndrome and maps to the critical region. Hum Mol Genet. 1996 Sep;5(9):1305–1310. doi: 10.1093/hmg/5.9.1305. [DOI] [PubMed] [Google Scholar]
- Himpel S., Panzer P., Eirmbter K., Czajkowska H., Sayed M., Packman L. C., Blundell T., Kentrup H., Grötzinger J., Joost H. G. Identification of the autophosphorylation sites and characterization of their effects in the protein kinase DYRK1A. Biochem J. 2001 Nov 1;359(Pt 3):497–505. doi: 10.1042/0264-6021:3590497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Himpel S., Tegge W., Frank R., Leder S., Joost H. G., Becker W. Specificity determinants of substrate recognition by the protein kinase DYRK1A. J Biol Chem. 2000 Jan 28;275(4):2431–2438. doi: 10.1074/jbc.275.4.2431. [DOI] [PubMed] [Google Scholar]
- Lassar A. B., Davis R. L., Wright W. E., Kadesch T., Murre C., Voronova A., Baltimore D., Weintraub H. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell. 1991 Jul 26;66(2):305–315. doi: 10.1016/0092-8674(91)90620-e. [DOI] [PubMed] [Google Scholar]
- Leder S., Weber Y., Altafaj X., Estivill X., Joost H. G., Becker W. Cloning and characterization of DYRK1B, a novel member of the DYRK family of protein kinases. Biochem Biophys Res Commun. 1999 Jan 19;254(2):474–479. doi: 10.1006/bbrc.1998.9967. [DOI] [PubMed] [Google Scholar]
- Lee K., Deng X., Friedman E. Mirk protein kinase is a mitogen-activated protein kinase substrate that mediates survival of colon cancer cells. Cancer Res. 2000 Jul 1;60(13):3631–3637. [PubMed] [Google Scholar]
- Li Ke, Zhao Shuqing, Karur Vinit, Wojchowski Don M. DYRK3 activation, engagement of protein kinase A/cAMP response element-binding protein, and modulation of progenitor cell survival. J Biol Chem. 2002 Sep 27;277(49):47052–47060. doi: 10.1074/jbc.M205374200. [DOI] [PubMed] [Google Scholar]
- Lim Seunghwan, Jin Kideok, Friedman Eileen. Mirk protein kinase is activated by MKK3 and functions as a transcriptional activator of HNF1alpha. J Biol Chem. 2002 Apr 29;277(28):25040–25046. doi: 10.1074/jbc.M203257200. [DOI] [PubMed] [Google Scholar]
- Macias Maria J., Wiesner Silke, Sudol Marius. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett. 2002 Feb 20;513(1):30–37. doi: 10.1016/s0014-5793(01)03290-2. [DOI] [PubMed] [Google Scholar]
- Mao Junhao, Maye Peter, Kogerman Priit, Tejedor Francisco J., Toftgard Rune, Xie Wei, Wu Guanqing, Wu Dianqing. Regulation of Gli1 transcriptional activity in the nucleus by Dyrk1. J Biol Chem. 2002 Jul 22;277(38):35156–35161. doi: 10.1074/jbc.M206743200. [DOI] [PubMed] [Google Scholar]
- Matsuo R., Ochiai W., Nakashima K., Taga T. A new expression cloning strategy for isolation of substrate-specific kinases by using phosphorylation site-specific antibody. J Immunol Methods. 2001 Jan 1;247(1-2):141–151. doi: 10.1016/s0022-1759(00)00313-6. [DOI] [PubMed] [Google Scholar]
- Ohira M., Seki N., Nagase T., Suzuki E., Nomura N., Ohara O., Hattori M., Sakaki Y., Eki T., Murakami Y. Gene identification in 1.6-Mb region of the Down syndrome region on chromosome 21. Genome Res. 1997 Jan;7(1):47–58. doi: 10.1101/gr.7.1.47. [DOI] [PubMed] [Google Scholar]
- Quandt K., Frech K., Karas H., Wingender E., Werner T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 1995 Dec 11;23(23):4878–4884. doi: 10.1093/nar/23.23.4878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmoll D., Allan B. B., Burchell A. Cloning and sequencing of the 5' region of the human glucose-6-phosphatase gene: transcriptional regulation by cAMP, insulin and glucocorticoids in H4IIE hepatoma cells. FEBS Lett. 1996 Mar 25;383(1-2):63–66. doi: 10.1016/0014-5793(96)00224-4. [DOI] [PubMed] [Google Scholar]
- Smith D. J., Stevens M. E., Sudanagunta S. P., Bronson R. T., Makhinson M., Watabe A. M., O'Dell T. J., Fung J., Weier H. U., Cheng J. F. Functional screening of 2 Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nat Genet. 1997 May;16(1):28–36. doi: 10.1038/ng0597-28. [DOI] [PubMed] [Google Scholar]
- Taylor S. S., Knighton D. R., Zheng J., Sowadski J. M., Gibbs C. S., Zoller M. J. A template for the protein kinase family. Trends Biochem Sci. 1993 Mar;18(3):84–89. doi: 10.1016/0968-0004(93)80001-r. [DOI] [PubMed] [Google Scholar]
- Tejedor F., Zhu X. R., Kaltenbach E., Ackermann A., Baumann A., Canal I., Heisenberg M., Fischbach K. F., Pongs O. minibrain: a new protein kinase family involved in postembryonic neurogenesis in Drosophila. Neuron. 1995 Feb;14(2):287–301. doi: 10.1016/0896-6273(95)90286-4. [DOI] [PubMed] [Google Scholar]
- Weiland M., Bahr F., Höhne M., Schürmann A., Ziehm D., Joost H. G. The signaling potential of the receptors for insulin and insulin-like growth factor I (IGF-I) in 3T3-L1 adipocytes: comparison of glucose transport activity, induction of oncogene c-fos, glucose transporter mRNA, and DNA-synthesis. J Cell Physiol. 1991 Dec;149(3):428–435. doi: 10.1002/jcp.1041490311. [DOI] [PubMed] [Google Scholar]
- Weintraub H., Davis R., Tapscott S., Thayer M., Krause M., Benezra R., Blackwell T. K., Turner D., Rupp R., Hollenberg S. The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991 Feb 15;251(4995):761–766. doi: 10.1126/science.1846704. [DOI] [PubMed] [Google Scholar]
- Wetsel W. C., Mellon P. L., Weiner R. I., Negro-Vilar A. Metabolism of pro-luteinizing hormone-releasing hormone in immortalized hypothalamic neurons. Endocrinology. 1991 Sep;129(3):1584–1595. doi: 10.1210/endo-129-3-1584. [DOI] [PubMed] [Google Scholar]
- Woods Y. L., Rena G., Morrice N., Barthel A., Becker W., Guo S., Unterman T. G., Cohen P. The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. Biochem J. 2001 May 1;355(Pt 3):597–607. doi: 10.1042/bj3550597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang E. J., Ahn Y. S., Chung K. C. Protein kinase Dyrk1 activates cAMP response element-binding protein during neuronal differentiation in hippocampal progenitor cells. J Biol Chem. 2001 Aug 22;276(43):39819–39824. doi: 10.1074/jbc.M104091200. [DOI] [PubMed] [Google Scholar]
- von Groote-Bidlingmaier Florian, Schmoll Dieter, Orth Hans Martin, Joost Hans Georg, Becker Walter, Barthel Andreas. DYRK1 is a co-activator of FKHR (FOXO1a)-dependent glucose-6-phosphatase gene expression. Biochem Biophys Res Commun. 2003 Jan 17;300(3):764–769. doi: 10.1016/s0006-291x(02)02914-5. [DOI] [PubMed] [Google Scholar]
