Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 15;372(Pt 3):767–774. doi: 10.1042/BJ20030187

Tissue inhibitor of metalloproteinases-1 signalling pathway leading to erythroid cell survival.

Elise Lambert 1, Cédric Boudot 1, Zahra Kadri 1, Mahdhia Soula-Rothhut 1, Marie-Line Sowa 1, Patrick Mayeux 1, William Hornebeck 1, Bernard Haye 1, Emmanuelle Petitfrere 1
PMCID: PMC1223442  PMID: 12639219

Abstract

Tissue inhibitors of metalloproteinases (TIMP) are specific inhibitors of matrix metalloproteinases (MMPs) and thus participate in maintaining the balance between extracellular matrix deposition and degradation in several physio-pathological processes. Nevertheless, TIMP must be regarded as multifunctional proteins involved in cell growth, angiogenesis and apoptosis. The molecular mechanisms induced by TIMP remain largely unknown. In the present study, we provide evidence that TIMP-1 induces a significant anti-apoptotic effect in the human erythroleukaemic cell line UT-7 and in the murine myeloid cell line 32D. Using specific kinases inhibitors, we show that TIMP-1-mediated cell survival is dependent upon Janus kinase (JAK) 2 and phosphoinositide 3-kinase (PI 3-kinase) activities. By transient transfection of dominant-negative Akt in UT-7 cells, we demonstrate that this kinase is crucial for the TIMP-1 anti-apoptotic effect. Moreover, TIMP-1 enhances specific phosphorylation of both Akt and Bad (Bcl-2/Bcl-X(L)-antagonist, causing cell death) in a PI 3-kinase-dependent manner and, besides, controls the level of the anti-apoptotic protein Bcl-X(L). We conclude that TIMP-1 induces haematopoietic cell survival via the JAK2/PI 3-kinase/Akt/Bad pathway.

Full Text

The Full Text of this article is available as a PDF (225.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. M., Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. 1998 Aug 28;281(5381):1322–1326. doi: 10.1126/science.281.5381.1322. [DOI] [PubMed] [Google Scholar]
  2. Avalos B. R., Kaufman S. E., Tomonaga M., Williams R. E., Golde D. W., Gasson J. C. K562 cells produce and respond to human erythroid-potentiating activity. Blood. 1988 Jun;71(6):1720–1725. [PubMed] [Google Scholar]
  3. Bertaux B., Hornebeck W., Eisen A. Z., Dubertret L. Growth stimulation of human keratinocytes by tissue inhibitor of metalloproteinases. J Invest Dermatol. 1991 Oct;97(4):679–685. doi: 10.1111/1523-1747.ep12483956. [DOI] [PubMed] [Google Scholar]
  4. Birkedal-Hansen H. Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol. 1995 Oct;7(5):728–735. doi: 10.1016/0955-0674(95)80116-2. [DOI] [PubMed] [Google Scholar]
  5. Brew K., Dinakarpandian D., Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta. 2000 Mar 7;1477(1-2):267–283. doi: 10.1016/s0167-4838(99)00279-4. [DOI] [PubMed] [Google Scholar]
  6. Brunet A., Datta S. R., Greenberg M. E. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol. 2001 Jun;11(3):297–305. doi: 10.1016/s0959-4388(00)00211-7. [DOI] [PubMed] [Google Scholar]
  7. Corcoran M. L., Stetler-Stevenson W. G. Tissue inhibitor of metalloproteinase-2 stimulates fibroblast proliferation via a cAMP-dependent mechanism. J Biol Chem. 1995 Jun 2;270(22):13453–13459. doi: 10.1074/jbc.270.22.13453. [DOI] [PubMed] [Google Scholar]
  8. Damen J. E., Cutler R. L., Jiao H., Yi T., Krystal G. Phosphorylation of tyrosine 503 in the erythropoietin receptor (EpR) is essential for binding the P85 subunit of phosphatidylinositol (PI) 3-kinase and for EpR-associated PI 3-kinase activity. J Biol Chem. 1995 Oct 6;270(40):23402–23408. doi: 10.1074/jbc.270.40.23402. [DOI] [PubMed] [Google Scholar]
  9. Gomez D. E., Alonso D. F., Yoshiji H., Thorgeirsson U. P. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol. 1997 Oct;74(2):111–122. [PubMed] [Google Scholar]
  10. Guedez L., Courtemanch L., Stetler-Stevenson M. Tissue inhibitor of metalloproteinase (TIMP)-1 induces differentiation and an antiapoptotic phenotype in germinal center B cells. Blood. 1998 Aug 15;92(4):1342–1349. [PubMed] [Google Scholar]
  11. Guedez L., Stetler-Stevenson W. G., Wolff L., Wang J., Fukushima P., Mansoor A., Stetler-Stevenson M. In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. J Clin Invest. 1998 Dec 1;102(11):2002–2010. doi: 10.1172/JCI2881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haseyama Y., Sawada K. i., Oda A., Koizumi K., Takano H., Tarumi T., Nishio M., Handa M., Ikeda Y., Koike T. Phosphatidylinositol 3-kinase is involved in the protection of primary cultured human erythroid precursor cells from apoptosis. Blood. 1999 Sep 1;94(5):1568–1577. [PubMed] [Google Scholar]
  13. Hayakawa T. Tissue inhibitors of metalloproteinases and their cell growth-promoting activity. Cell Struct Funct. 1994 Jun;19(3):109–114. doi: 10.1247/csf.19.109. [DOI] [PubMed] [Google Scholar]
  14. Hayakawa T., Yamashita K., Kishi J., Harigaya K. Tissue inhibitor of metalloproteinases from human bone marrow stromal cell line KM 102 has erythroid-potentiating activity, suggesting its possibly bifunctional role in the hematopoietic microenvironment. FEBS Lett. 1990 Jul 30;268(1):125–128. doi: 10.1016/0014-5793(90)80989-v. [DOI] [PubMed] [Google Scholar]
  15. Hayakawa T., Yamashita K., Ohuchi E., Shinagawa A. Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). J Cell Sci. 1994 Sep;107(Pt 9):2373–2379. doi: 10.1242/jcs.107.9.2373. [DOI] [PubMed] [Google Scholar]
  16. Hayakawa T., Yamashita K., Tanzawa K., Uchijima E., Iwata K. Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett. 1992 Feb 17;298(1):29–32. doi: 10.1016/0014-5793(92)80015-9. [DOI] [PubMed] [Google Scholar]
  17. Kadri Z., Petitfrère E., Boudot C., Freyssinier J. M., Fichelson S., Mayeux P., Emonard H., Hornebeck W., Haye B., Billat C. Erythropoietin induction of tissue inhibitors of metalloproteinase-1 expression and secretion is mediated by mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways. Cell Growth Differ. 2000 Nov;11(11):573–580. [PubMed] [Google Scholar]
  18. Klein G. The extracellular matrix of the hematopoietic microenvironment. Experientia. 1995 Sep 29;51(9-10):914–926. doi: 10.1007/BF01921741. [DOI] [PubMed] [Google Scholar]
  19. Komatsu N., Nakauchi H., Miwa A., Ishihara T., Eguchi M., Moroi M., Okada M., Sato Y., Wada H., Yawata Y. Establishment and characterization of a human leukemic cell line with megakaryocytic features: dependency on granulocyte-macrophage colony-stimulating factor, interleukin 3, or erythropoietin for growth and survival. Cancer Res. 1991 Jan 1;51(1):341–348. [PubMed] [Google Scholar]
  20. Krasilnikov M. A. Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc) 2000 Jan;65(1):59–67. [PubMed] [Google Scholar]
  21. Lecoq-Lafon C., Verdier F., Fichelson S., Chrétien S., Gisselbrecht S., Lacombe C., Mayeux P. Erythropoietin induces the tyrosine phosphorylation of GAB1 and its association with SHC, SHP2, SHIP, and phosphatidylinositol 3-kinase. Blood. 1999 Apr 15;93(8):2578–2585. [PubMed] [Google Scholar]
  22. Lee J. T., Jr, McCubrey J. A. The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention in leukemia. Leukemia. 2002 Apr;16(4):486–507. doi: 10.1038/sj.leu.2402460. [DOI] [PubMed] [Google Scholar]
  23. Li G., Fridman R., Kim H. R. Tissue inhibitor of metalloproteinase-1 inhibits apoptosis of human breast epithelial cells. Cancer Res. 1999 Dec 15;59(24):6267–6275. [PubMed] [Google Scholar]
  24. Luparello C., Schilling T., Cirincione R., Pucci-Minafra I. Extracellular matrix regulation of PTHrP and PTH/PTHrP receptor in a human breast cancer cell line. FEBS Lett. 1999 Dec 17;463(3):265–269. doi: 10.1016/s0014-5793(99)01635-x. [DOI] [PubMed] [Google Scholar]
  25. Miura O., Nakamura N., Quelle F. W., Witthuhn B. A., Ihle J. N., Aoki N. Erythropoietin induces association of the JAK2 protein tyrosine kinase with the erythropoietin receptor in vivo. Blood. 1994 Sep 1;84(5):1501–1507. [PubMed] [Google Scholar]
  26. Murate T., Yamashita K., Ohashi H., Kagami Y., Tsushita K., Kinoshita T., Hotta T., Saito H., Yoshida S., Mori K. J. Erythroid potentiating activity of tissue inhibitor of metalloproteinases on the differentiation of erythropoietin-responsive mouse erythroleukemia cell line, ELM-I-1-3, is closely related to its cell growth potentiating activity. Exp Hematol. 1993 Jan;21(1):169–176. [PubMed] [Google Scholar]
  27. Murphy Frank R., Issa Razao, Zhou Xiaoying, Ratnarajah Shabna, Nagase Hideaki, Arthur Michael J. P., Benyon Christopher, Iredale John P. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J Biol Chem. 2002 Jan 16;277(13):11069–11076. doi: 10.1074/jbc.M111490200. [DOI] [PubMed] [Google Scholar]
  28. Murphy N. R., Leinbach S. S., Hellwig R. J. A potent, cost-effective RNase inhibitor. Biotechniques. 1995 Jun;18(6):1068–1073. [PubMed] [Google Scholar]
  29. Nagase H., Woessner J. F., Jr Matrix metalloproteinases. J Biol Chem. 1999 Jul 30;274(31):21491–21494. doi: 10.1074/jbc.274.31.21491. [DOI] [PubMed] [Google Scholar]
  30. Petitfrère E., Kadri Z., Boudot C., Sowa M. L., Mayeux P., Haye B., Billat C. Involvement of the p38 mitogen-activated protein kinase pathway in tissue inhibitor of metalloproteinases-1-induced erythroid differentiation. FEBS Lett. 2000 Nov 24;485(2-3):117–121. doi: 10.1016/s0014-5793(00)02210-9. [DOI] [PubMed] [Google Scholar]
  31. Silva M., Benito A., Sanz C., Prosper F., Ekhterae D., Nuñez G., Fernandez-Luna J. L. Erythropoietin can induce the expression of bcl-x(L) through Stat5 in erythropoietin-dependent progenitor cell lines. J Biol Chem. 1999 Aug 6;274(32):22165–22169. doi: 10.1074/jbc.274.32.22165. [DOI] [PubMed] [Google Scholar]
  32. Silva M., Grillot D., Benito A., Richard C., Nuñez G., Fernández-Luna J. L. Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through Bcl-XL and Bcl-2. Blood. 1996 Sep 1;88(5):1576–1582. [PubMed] [Google Scholar]
  33. Wang Ting, Yamashita Kyoko, Iwata Kazushi, Hayakawa Taro. Both tissue inhibitors of metalloproteinases-1 (TIMP-1) and TIMP-2 activate Ras but through different pathways. Biochem Biophys Res Commun. 2002 Aug 9;296(1):201–205. doi: 10.1016/s0006-291x(02)00741-6. [DOI] [PubMed] [Google Scholar]
  34. Witthuhn B. A., Quelle F. W., Silvennoinen O., Yi T., Tang B., Miura O., Ihle J. N. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell. 1993 Jul 30;74(2):227–236. doi: 10.1016/0092-8674(93)90414-l. [DOI] [PubMed] [Google Scholar]
  35. Yamashita K., Suzuki M., Iwata H., Koike T., Hamaguchi M., Shinagawa A., Noguchi T., Hayakawa T. Tyrosine phosphorylation is crucial for growth signaling by tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2). FEBS Lett. 1996 Oct 28;396(1):103–107. doi: 10.1016/0014-5793(96)01066-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES