Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jun 15;372(Pt 3):811–819. doi: 10.1042/BJ20030252

Regulation of the CDP-choline pathway by sterol regulatory element binding proteins involves transcriptional and post-transcriptional mechanisms.

Neale D Ridgway 1, Thomas A Lagace 1
PMCID: PMC1223452  PMID: 12659631

Abstract

The synthesis of phosphatidylcholine (PtdCho) by the CDP-choline pathway is under the control of the rate-limiting enzyme CTP:phosphocholine cytidylyltransferase (CCT). Sterol regulatory element binding proteins (SREBPs) have been proposed to regulate CCT at the transcriptional level, or via the synthesis of lipid activators or substrates of the CDP-choline pathway. To assess the contributions of these two mechanisms, we examined CCTalpha expression and PtdCho synthesis by the CDP-choline pathway in cholesterol and fatty acid auxotrophic CHO M19 cells inducibly expressing constitutively active nuclear forms of SREBP1a or SREBP2. Induction of either SREBP resulted in increased expression of mRNAs for sterol-regulated genes, elevated fatty acid and cholesterol synthesis (>10-50-fold) and increased PtdCho synthesis (2-fold). CCTalpha mRNA was increased 2-fold by enforced expression of SREBP1a or SREBP2. The resultant increase in CCTalpha protein and activity (2-fold) was restricted primarily to the soluble fraction of cells, and increased CCTalpha activity in vivo was not detected. Inhibition of the synthesis of fatty acids or their CoA esters by cerulenin or triacsin C respectively following SREBP induction effectively blocked the accompanying elevation in PtdCho synthesis. Thus PtdCho synthesis was driven by increased synthesis of fatty acids or a product thereof. These data show that transcriptional activation of CCTalpha is modest relative to that of other SREBP-regulated genes, and that stimulation of PtdCho synthesis by SREBPs in CHO cells is due primarily to increased fatty acid synthesis.

Full Text

The Full Text of this article is available as a PDF (287.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakovic M., Waite K. A., Vance D. E. Functional significance of Sp1, Sp2, and Sp3 transcription factors in regulation of the murine CTP:phosphocholine cytidylyltransferase alpha promoter. J Lipid Res. 2000 Apr;41(4):583–594. [PubMed] [Google Scholar]
  2. Bakovic M., Waite K., Tang W., Tabas I., Vance D. E. Transcriptional activation of the murine CTP:phosphocholine cytidylyltransferase gene (Ctpct): combined action of upstream stimulatory and inhibitory cis-acting elements. Biochim Biophys Acta. 1999 Apr 19;1438(1):147–165. doi: 10.1016/s1388-1981(99)00042-6. [DOI] [PubMed] [Google Scholar]
  3. Bennett M. K., Lopez J. M., Sanchez H. B., Osborne T. F. Sterol regulation of fatty acid synthase promoter. Coordinate feedback regulation of two major lipid pathways. J Biol Chem. 1995 Oct 27;270(43):25578–25583. doi: 10.1074/jbc.270.43.25578. [DOI] [PubMed] [Google Scholar]
  4. Brown M. S., Faust J. R., Goldstein J. L., Kaneko I., Endo A. Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase. J Biol Chem. 1978 Feb 25;253(4):1121–1128. [PubMed] [Google Scholar]
  5. Brown M. S., Goldstein J. L. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11041–11048. doi: 10.1073/pnas.96.20.11041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Cornell R. B. Cholinephosphotransferase from mammalian sources. Methods Enzymol. 1992;209:267–272. doi: 10.1016/0076-6879(92)09033-y. [DOI] [PubMed] [Google Scholar]
  8. Cornell R. Chemical cross-linking reveals a dimeric structure for CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1989 May 25;264(15):9077–9082. [PubMed] [Google Scholar]
  9. Foretz M., Guichard C., Ferré P., Foufelle F. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12737–12742. doi: 10.1073/pnas.96.22.12737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goldstein J. L., Basu S. K., Brown M. S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. doi: 10.1016/0076-6879(83)98152-1. [DOI] [PubMed] [Google Scholar]
  11. Golfman L. S., Bakovic M., Vance D. E. Transcription of the CTP:phosphocholine cytidylyltransferase alpha gene is enhanced during the S phase of the cell cycle. J Biol Chem. 2001 Sep 13;276(47):43688–43692. doi: 10.1074/jbc.M108170200. [DOI] [PubMed] [Google Scholar]
  12. Hasan M. T., Chang C. C., Chang T. Y. Somatic cell genetic and biochemical characterization of cell lines resulting from human genomic DNA transfections of Chinese hamster ovary cell mutants defective in sterol-dependent activation of sterol synthesis and LDL receptor expression. Somat Cell Mol Genet. 1994 May;20(3):183–194. doi: 10.1007/BF02254759. [DOI] [PubMed] [Google Scholar]
  13. Houweling M., Cui Z., Tessitore L., Vance D. E. Induction of hepatocyte proliferation after partial hepatectomy is accompanied by a markedly reduced expression of phosphatidylethanolamine N-methyltransferase-2. Biochim Biophys Acta. 1997 May 17;1346(1):1–9. doi: 10.1016/s0005-2760(97)00011-8. [DOI] [PubMed] [Google Scholar]
  14. Igal R. A., Wang P., Coleman R. A. Triacsin C blocks de novo synthesis of glycerolipids and cholesterol esters but not recycling of fatty acid into phospholipid: evidence for functionally separate pools of acyl-CoA. Biochem J. 1997 Jun 1;324(Pt 2):529–534. doi: 10.1042/bj3240529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kast H. R., Nguyen C. M., Anisfeld A. M., Ericsson J., Edwards P. A. CTP:phosphocholine cytidylyltransferase, a new sterol- and SREBP-responsive gene. J Lipid Res. 2001 Aug;42(8):1266–1272. [PubMed] [Google Scholar]
  16. Kent C. CTP:phosphocholine cytidylyltransferase. Biochim Biophys Acta. 1997 Sep 4;1348(1-2):79–90. doi: 10.1016/s0005-2760(97)00112-4. [DOI] [PubMed] [Google Scholar]
  17. Kent C. Eukaryotic phospholipid biosynthesis. Annu Rev Biochem. 1995;64:315–343. doi: 10.1146/annurev.bi.64.070195.001531. [DOI] [PubMed] [Google Scholar]
  18. Kim J. B., Spiegelman B. M. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 1996 May 1;10(9):1096–1107. doi: 10.1101/gad.10.9.1096. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Lagace T. A., Storey M. K., Ridgway N. D. Regulation of phosphatidylcholine metabolism in Chinese hamster ovary cells by the sterol regulatory element-binding protein (SREBP)/SREBP cleavage-activating protein pathway. J Biol Chem. 2000 May 12;275(19):14367–14374. doi: 10.1074/jbc.275.19.14367. [DOI] [PubMed] [Google Scholar]
  21. Lagace Thomas A., Miller Jessica R., Ridgway Neale D. Caspase processing and nuclear export of CTP:phosphocholine cytidylyltransferase alpha during farnesol-induced apoptosis. Mol Cell Biol. 2002 Jul;22(13):4851–4862. doi: 10.1128/MCB.22.13.4851-4862.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lewin T. M., Kim J. H., Granger D. A., Vance J. E., Coleman R. A. Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently. J Biol Chem. 2001 Apr 23;276(27):24674–24679. doi: 10.1074/jbc.M102036200. [DOI] [PubMed] [Google Scholar]
  23. Lykidis A., Baburina I., Jackowski S. Distribution of CTP:phosphocholine cytidylyltransferase (CCT) isoforms. Identification of a new CCTbeta splice variant. J Biol Chem. 1999 Sep 17;274(38):26992–27001. doi: 10.1074/jbc.274.38.26992. [DOI] [PubMed] [Google Scholar]
  24. Lykidis A., Murti K. G., Jackowski S. Cloning and characterization of a second human CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1998 May 29;273(22):14022–14029. doi: 10.1074/jbc.273.22.14022. [DOI] [PubMed] [Google Scholar]
  25. Mallampalli Rama K., Ryan Alan J., Carroll James L., Osborne Timothy F., Thomas Christie P. Lipid deprivation increases surfactant phosphatidylcholine synthesis via a sterol-sensitive regulatory element within the CTP:phosphocholine cytidylyltransferase promoter. Biochem J. 2002 Feb 15;362(Pt 1):81–88. doi: 10.1042/0264-6021:3620081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nohturfft A., DeBose-Boyd R. A., Scheek S., Goldstein J. L., Brown M. S. Sterols regulate cycling of SREBP cleavage-activating protein (SCAP) between endoplasmic reticulum and Golgi. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11235–11240. doi: 10.1073/pnas.96.20.11235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nohturfft A., Yabe D., Goldstein J. L., Brown M. S., Espenshade P. J. Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell. 2000 Aug 4;102(3):315–323. doi: 10.1016/s0092-8674(00)00037-4. [DOI] [PubMed] [Google Scholar]
  28. Northwood I. C., Tong A. H., Crawford B., Drobnies A. E., Cornell R. B. Shuttling of CTP:Phosphocholine cytidylyltransferase between the nucleus and endoplasmic reticulum accompanies the wave of phosphatidylcholine synthesis during the G(0) --> G(1) transition. J Biol Chem. 1999 Sep 10;274(37):26240–26248. doi: 10.1074/jbc.274.37.26240. [DOI] [PubMed] [Google Scholar]
  29. Osborne T. F. Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action. J Biol Chem. 2000 Oct 20;275(42):32379–32382. doi: 10.1074/jbc.R000017200. [DOI] [PubMed] [Google Scholar]
  30. Pai J. T., Guryev O., Brown M. S., Goldstein J. L. Differential stimulation of cholesterol and unsaturated fatty acid biosynthesis in cells expressing individual nuclear sterol regulatory element-binding proteins. J Biol Chem. 1998 Oct 2;273(40):26138–26148. doi: 10.1074/jbc.273.40.26138. [DOI] [PubMed] [Google Scholar]
  31. Pelech S. L., Power E., Vance D. E. Activities of the phosphatidylcholine biosynthetic enzymes in rat liver during development. Can J Biochem Cell Biol. 1983 Nov;61(11):1147–1152. doi: 10.1139/o83-147. [DOI] [PubMed] [Google Scholar]
  32. Preiss J., Loomis C. R., Bishop W. R., Stein R., Niedel J. E., Bell R. M. Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis-transformed normal rat kidney cells. J Biol Chem. 1986 Jul 5;261(19):8597–8600. [PubMed] [Google Scholar]
  33. Rawson R. B., Zelenski N. G., Nijhawan D., Ye J., Sakai J., Hasan M. T., Chang T. Y., Brown M. S., Goldstein J. L. Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol Cell. 1997 Dec;1(1):47–57. doi: 10.1016/s1097-2765(00)80006-4. [DOI] [PubMed] [Google Scholar]
  34. Repa J. J., Liang G., Ou J., Bashmakov Y., Lobaccaro J. M., Shimomura I., Shan B., Brown M. S., Goldstein J. L., Mangelsdorf D. J. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 2000 Nov 15;14(22):2819–2830. doi: 10.1101/gad.844900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ridgway N. D., Lagace T. A. Brefeldin A renders Chinese hamster ovary cells insensitive to transcriptional suppression by 25-hydroxycholesterol. J Biol Chem. 1995 Apr 7;270(14):8023–8031. doi: 10.1074/jbc.270.14.8023. [DOI] [PubMed] [Google Scholar]
  36. Ryan A. J., McCoy D. M., Mathur S. N., Field F. J., Mallampalli R. K. Lipoprotein deprivation stimulates transcription of the CTP:phosphocholine cytidylyltransferase gene. J Lipid Res. 2000 Aug;41(8):1268–1277. [PubMed] [Google Scholar]
  37. Storey M. K., Byers D. M., Cook H. W., Ridgway N. D. Decreased phosphatidylcholine biosynthesis and abnormal distribution of CTP:phosphocholine cytidylyltransferase in cholesterol auxotrophic Chinese hamster ovary cells. J Lipid Res. 1997 Apr;38(4):711–722. [PubMed] [Google Scholar]
  38. Sugimoto H., Bakovic M., Yamashita S., Vance D. E. Identification of transcriptional enhancer factor-4 as a transcriptional modulator of CTP:phosphocholine cytidylyltransferase alpha. J Biol Chem. 2001 Jan 12;276(15):12338–12344. doi: 10.1074/jbc.M100090200. [DOI] [PubMed] [Google Scholar]
  39. Tessitore L., Dianzani I., Cui Z., Vance D. E. Diminished expression of phosphatidylethanolamine N-methyltransferase 2 during hepatocarcinogenesis. Biochem J. 1999 Jan 1;337(Pt 1):23–27. [PMC free article] [PubMed] [Google Scholar]
  40. Tessner T. G., Rock C. O., Kalmar G. B., Cornell R. B., Jackowski S. Colony-stimulating factor 1 regulates CTP: phosphocholine cytidylyltransferase mRNA levels. J Biol Chem. 1991 Sep 5;266(25):16261–16264. [PubMed] [Google Scholar]
  41. Vance D. E., Ridgway N. D. The methylation of phosphatidylethanolamine. Prog Lipid Res. 1988;27(1):61–79. doi: 10.1016/0163-7827(88)90005-7. [DOI] [PubMed] [Google Scholar]
  42. Wang Cheng, JeBailey Lellean, Ridgway Neale D. Oxysterol-binding-protein (OSBP)-related protein 4 binds 25-hydroxycholesterol and interacts with vimentin intermediate filaments. Biochem J. 2002 Feb 1;361(Pt 3):461–472. doi: 10.1042/0264-6021:3610461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wang Y., MacDonald J. I., Kent C. Identification of the nuclear localization signal of rat liver CTP:phosphocholine cytidylyltransferase. J Biol Chem. 1995 Jan 6;270(1):354–360. doi: 10.1074/jbc.270.1.354. [DOI] [PubMed] [Google Scholar]
  44. Wang Y., MacDonald J. I., Kent C. Regulation of CTP:phosphocholine cytidylyltransferase in HeLa cells. Effect of oleate on phosphorylation and intracellular localization. J Biol Chem. 1993 Mar 15;268(8):5512–5518. [PubMed] [Google Scholar]
  45. Wright P. S., Morand J. N., Kent C. Regulation of phosphatidylcholine biosynthesis in Chinese hamster ovary cells by reversible membrane association of CTP: phosphocholine cytidylyltransferase. J Biol Chem. 1985 Jul 5;260(13):7919–7926. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES