Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jul 1;373(Pt 1):221–229. doi: 10.1042/BJ20021629

Properties of phagocyte NADPH oxidase p47-phox mutants with unmasked SH3 (Src homology 3) domains: full reconstitution of oxidase activity in a semi-recombinant cell-free system lacking arachidonic acid.

Guihong Peng 1, Jin Huang 1, Mellonie Boyd 1, Michael E Kleinberg 1
PMCID: PMC1223460  PMID: 12650641

Abstract

In an early step in the assembly of the phagocyte NADPH oxidase, p47-phox translocates from the cytosol to the membrane, mediated by engagement of the N-termini of two p47-phox Src homology 3 (SH3) domains with a proline-rich region (PRR) in the p22-phox subunit of cytochrome b (558). In response to phagocyte activation, several serine residues in a C-terminal arginine/lysine-rich domain of p47-phox are phosphorylated, leading to changes in the conformation of p47-phox and exposure of its N-terminal SH3 domain that is normally masked by internal association with the arginine/lysine-rich domain. We report that triple alanine substitutions at Asp-217, Glu-218 and Glu-223 in a short sequence that links the tandem p47-phox SH3 domains unmasked the N-terminal SH3 domain, similar to the effects of aspartic acid substitutions at Ser-310 and Ser-328 in the arginine/lysine-rich region. Recombinant p47-phox proteins with mutations in either the linker region or the arginine/lysine-rich domain were active in the absence of arachidonic acid stimulation in a cell-free NADPH oxidase system consisting of recombinant p67-phox, Rac1-guanosine 5'-[gamma-thio]triphosphate and neutrophil membranes. Supplementing neutrophil membranes with phosphoinositides or other negatively charged phospholipids markedly enhanced cell-free superoxide generation by these p47-phox mutants in the absence of arachidonic acid, to levels equivalent to those generated by wild-type p47-phox following arachidonic acid activation. This enhancement may be related to recruitment to the membrane of p47-phox mediated by a novel secondary phox homology (PX) domain binding site that broadly recognizes phospholipids. No specific enhancement by specific phosphorylated phosphatidylinositols was found to suggest a dominant role for the p47-phox primary PX domain binding site. Truncated p47-phox S310D S328D lacking the C-terminal PRR was inactive in the cell-free system without arachidonic acid, but was fully active with arachidonic acid. This suggests that activation of NADPH oxidase in an arachidonate-free cell-free system requires association of the p47-phox C-terminal PRR with the p67-phox C-terminal SH3 domain.

Full Text

The Full Text of this article is available as a PDF (216.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ago T., Nunoi H., Ito T., Sumimoto H. Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47(phox). Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47(phox), thereby activating the oxidase. J Biol Chem. 1999 Nov 19;274(47):33644–33653. doi: 10.1074/jbc.274.47.33644. [DOI] [PubMed] [Google Scholar]
  2. Babior B. M. Activation of the respiratory burst oxidase. Environ Health Perspect. 1994 Dec;102 (Suppl 10):53–56. doi: 10.1289/ehp.94102s1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Babior B. M., Lambeth J. D., Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophys. 2002 Jan 15;397(2):342–344. doi: 10.1006/abbi.2001.2642. [DOI] [PubMed] [Google Scholar]
  4. Clark R. A. Activation of the neutrophil respiratory burst oxidase. J Infect Dis. 1999 Mar;179 (Suppl 2):S309–S317. doi: 10.1086/513849. [DOI] [PubMed] [Google Scholar]
  5. Cross A. R., Rae J., Curnutte J. T. Cytochrome b-245 of the neutrophil superoxide-generating system contains two nonidentical hemes. Potentiometric studies of a mutant form of gp91phox. J Biol Chem. 1995 Jul 21;270(29):17075–17077. doi: 10.1074/jbc.270.29.17075. [DOI] [PubMed] [Google Scholar]
  6. Dang P. M., Cross A. R., Babior B. M. Assembly of the neutrophil respiratory burst oxidase: a direct interaction between p67PHOX and cytochrome b558. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3001–3005. doi: 10.1073/pnas.061029698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Finan P., Shimizu Y., Gout I., Hsuan J., Truong O., Butcher C., Bennett P., Waterfield M. D., Kellie S. An SH3 domain and proline-rich sequence mediate an interaction between two components of the phagocyte NADPH oxidase complex. J Biol Chem. 1994 May 13;269(19):13752–13755. [PubMed] [Google Scholar]
  8. Fontayne Alexandre, Dang Pham My-Chan, Gougerot-Pocidalo Marie-Anne, El-Benna Jamel. Phosphorylation of p47phox sites by PKC alpha, beta II, delta, and zeta: effect on binding to p22phox and on NADPH oxidase activation. Biochemistry. 2002 Jun 18;41(24):7743–7750. doi: 10.1021/bi011953s. [DOI] [PubMed] [Google Scholar]
  9. Hata K., Ito T., Takeshige K., Sumimoto H. Anionic amphiphile-independent activation of the phagocyte NADPH oxidase in a cell-free system by p47phox and p67phox, both in C terminally truncated forms. Implication for regulatory Src homology 3 domain-mediated interactions. J Biol Chem. 1998 Feb 13;273(7):4232–4236. doi: 10.1074/jbc.273.7.4232. [DOI] [PubMed] [Google Scholar]
  10. Hiroaki H., Ago T., Ito T., Sumimoto H., Kohda D. Solution structure of the PX domain, a target of the SH3 domain. Nat Struct Biol. 2001 Jun;8(6):526–530. doi: 10.1038/88591. [DOI] [PubMed] [Google Scholar]
  11. Huang J., Hitt N. D., Kleinberg M. E. Stoichiometry of p22-phox and gp91-phox in phagocyte cytochrome b558. Biochemistry. 1995 Dec 26;34(51):16753–16757. doi: 10.1021/bi00051a024. [DOI] [PubMed] [Google Scholar]
  12. Huang J., Kleinberg M. E. Activation of the phagocyte NADPH oxidase protein p47(phox). Phosphorylation controls SH3 domain-dependent binding to p22(phox). J Biol Chem. 1999 Jul 9;274(28):19731–19737. doi: 10.1074/jbc.274.28.19731. [DOI] [PubMed] [Google Scholar]
  13. Karathanassis Dimitrios, Stahelin Robert V., Bravo Jerónimo, Perisic Olga, Pacold Christine M., Cho Wonhwa, Williams Roger L. Binding of the PX domain of p47(phox) to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J. 2002 Oct 1;21(19):5057–5068. doi: 10.1093/emboj/cdf519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kleinberg M. E., Mital D., Rotrosen D., Malech H. L. Characterization of a phagocyte cytochrome b558 91-kilodalton subunit functional domain: identification of peptide sequence and amino acids essential for activity. Biochemistry. 1992 Mar 17;31(10):2686–2690. doi: 10.1021/bi00125a008. [DOI] [PubMed] [Google Scholar]
  15. Kuribayashi Futoshi, Nunoi Hiroyuki, Wakamatsu Kaori, Tsunawaki Shohko, Sato Kazuki, Ito Takashi, Sumimoto Hideki. The adaptor protein p40(phox) as a positive regulator of the superoxide-producing phagocyte oxidase. EMBO J. 2002 Dec 2;21(23):6312–6320. doi: 10.1093/emboj/cdf642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leto T. L., Garrett M. C., Fujii H., Nunoi H. Characterization of neutrophil NADPH oxidase factors p47-phox and p67-phox from recombinant baculoviruses. J Biol Chem. 1991 Oct 15;266(29):19812–19818. [PubMed] [Google Scholar]
  17. Lopes L. R., Hoyal C. R., Knaus U. G., Babior B. M. Activation of the leukocyte NADPH oxidase by protein kinase C in a partially recombinant cell-free system. J Biol Chem. 1999 May 28;274(22):15533–15537. doi: 10.1074/jbc.274.22.15533. [DOI] [PubMed] [Google Scholar]
  18. Nathan C., Shiloh M. U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8841–8848. doi: 10.1073/pnas.97.16.8841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Palicz A., Foubert T. R., Jesaitis A. J., Marodi L., McPhail L. C. Phosphatidic acid and diacylglycerol directly activate NADPH oxidase by interacting with enzyme components. J Biol Chem. 2000 Nov 1;276(5):3090–3097. doi: 10.1074/jbc.M007759200. [DOI] [PubMed] [Google Scholar]
  20. Prigmore E., Ahmed S., Best A., Kozma R., Manser E., Segal A. W., Lim L. A 68-kDa kinase and NADPH oxidase component p67phox are targets for Cdc42Hs and Rac1 in neutrophils. J Biol Chem. 1995 May 5;270(18):10717–10722. doi: 10.1074/jbc.270.18.10717. [DOI] [PubMed] [Google Scholar]
  21. Rotrosen D., Leto T. L. Phosphorylation of neutrophil 47-kDa cytosolic oxidase factor. Translocation to membrane is associated with distinct phosphorylation events. J Biol Chem. 1990 Nov 15;265(32):19910–19915. [PubMed] [Google Scholar]
  22. Segal A. W., West I., Wientjes F., Nugent J. H., Chavan A. J., Haley B., Garcia R. C., Rosen H., Scrace G. Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem J. 1992 Jun 15;284(Pt 3):781–788. doi: 10.1042/bj2840781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shiose A., Sumimoto H. Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase. J Biol Chem. 2000 May 5;275(18):13793–13801. doi: 10.1074/jbc.275.18.13793. [DOI] [PubMed] [Google Scholar]
  24. Sumimoto H., Hata K., Mizuki K., Ito T., Kage Y., Sakaki Y., Fukumaki Y., Nakamura M., Takeshige K. Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase. J Biol Chem. 1996 Sep 6;271(36):22152–22158. doi: 10.1074/jbc.271.36.22152. [DOI] [PubMed] [Google Scholar]
  25. Sumimoto H., Kage Y., Nunoi H., Sasaki H., Nose T., Fukumaki Y., Ohno M., Minakami S., Takeshige K. Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5345–5349. doi: 10.1073/pnas.91.12.5345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wallach T. M., Segal A. W. Stoichiometry of the subunits of flavocytochrome b558 of the NADPH oxidase of phagocytes. Biochem J. 1996 Nov 15;320(Pt 1):33–38. doi: 10.1042/bj3200033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wientjes F. B., Hsuan J. J., Totty N. F., Segal A. W. p40phox, a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domains. Biochem J. 1993 Dec 15;296(Pt 3):557–561. doi: 10.1042/bj2960557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zhan Yong, Virbasius Joseph V., Song Xi, Pomerleau Darcy P., Zhou G. Wayne. The p40phox and p47phox PX domains of NADPH oxidase target cell membranes via direct and indirect recruitment by phosphoinositides. J Biol Chem. 2001 Nov 29;277(6):4512–4518. doi: 10.1074/jbc.M109520200. [DOI] [PubMed] [Google Scholar]
  29. de Mendez I., Garrett M. C., Adams A. G., Leto T. L. Role of p67-phox SH3 domains in assembly of the NADPH oxidase system. J Biol Chem. 1994 Jun 10;269(23):16326–16332. [PubMed] [Google Scholar]
  30. el Benna J., Faust L. P., Babior B. M. The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline-directed kinases. J Biol Chem. 1994 Sep 23;269(38):23431–23436. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES