Abstract
A series of eight double and triple mutants of mouse acetylcholinesterase (AChE; EC 3.1.1.7), with substitutions corresponding to residues found largely within the butyrylcholinesterase (BChE; EC 3.1.1.8) active-centre gorge, was analysed to compare steady-state kinetic constants for substrate turnover and inhibition parameters for enantiomeric methylphosphonate esters. The mutations combined substitutions in the acyl pocket (Phe(295)-->Leu and Phe(297)-->Ile) with the choline-binding site (Tyr(337)-->Ala and Phe(338)-->Ala) and with a side chain (Glu(202)--> Gln) N-terminal to the active-site serine, Ser(203). The mutations affected catalysis by increasing K (m) and decreasing k (cat), but these constants were typically affected by an order of magnitude or less, a relatively small change compared with the catalytic potential of AChE. To analyse the constraints on stereoselective phosphonylation, the mutant enzymes were reacted with a congeneric series of S (P)- and R (P)-methylphosphonates of known absolute stereochemistry. Where possible, the overall reaction rates were deconstructed into the primary constants for formation of the reversible complex and intrinsic phosphonylation. The multiple mutations greatly reduced the reaction rates of the more reactive S (P)-methylphosphonates, whereas the rates of reaction with the R (P)-methylphosphonates were markedly enhanced. With the phosphonates of larger steric bulk, the enhancement of rates for the R (P) enantiomers, coupled with the reduction of the S (P) enantiomers, was sufficient to invert markedly the enantiomeric preference. The sequence of mutations to enlarge the size of the AChE active-centre gorge, resembling in part the more spacious gorge of BChE, did not show an ordered conversion into BChE reactivity as anticipated for a rigid template. Rather, the individual aromatic residues may mutually interact to confer a distinctive stereospecificity pattern towards organophosphates.
Full Text
The Full Text of this article is available as a PDF (224.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berman H. A., Leonard K. Chiral reactions of acetylcholinesterase probed with enantiomeric methylphosphonothioates. Noncovalent determinants of enzyme chirality. J Biol Chem. 1989 Mar 5;264(7):3942–3950. [PubMed] [Google Scholar]
- Bourne Y., Taylor P., Marchot P. Acetylcholinesterase inhibition by fasciculin: crystal structure of the complex. Cell. 1995 Nov 3;83(3):503–512. doi: 10.1016/0092-8674(95)90128-0. [DOI] [PubMed] [Google Scholar]
- Changeux J. P. Responses of acetylcholinesterase from Torpedo marmorata to salts and curarizing drugs. Mol Pharmacol. 1966 Sep;2(5):369–392. [PubMed] [Google Scholar]
- Cousin X., Hotelier T., Giles K., Lievin P., Toutant J. P., Chatonnet A. The alpha/beta fold family of proteins database and the cholinesterase gene server ESTHER. Nucleic Acids Res. 1997 Jan 1;25(1):143–146. doi: 10.1093/nar/25.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cygler M., Schrag J. D., Sussman J. L., Harel M., Silman I., Gentry M. K., Doctor B. P. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci. 1993 Mar;2(3):366–382. doi: 10.1002/pro.5560020309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Ferrari G. V., Mallender W. D., Inestrosa N. C., Rosenberry T. L. Thioflavin T is a fluorescent probe of the acetylcholinesterase peripheral site that reveals conformational interactions between the peripheral and acylation sites. J Biol Chem. 2001 Apr 19;276(26):23282–23287. doi: 10.1074/jbc.M009596200. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
- Epstein D. J., Berman H. A., Taylor P. Ligand-induced conformational changes in acetylcholinesterase investigated with fluorescent phosphonates. Biochemistry. 1979 Oct 16;18(21):4749–4754. doi: 10.1021/bi00588a040. [DOI] [PubMed] [Google Scholar]
- Harel M., Sussman J. L., Krejci E., Bon S., Chanal P., Massoulié J., Silman I. Conversion of acetylcholinesterase to butyrylcholinesterase: modeling and mutagenesis. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10827–10831. doi: 10.1073/pnas.89.22.10827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hosea N. A., Berman H. A., Taylor P. Specificity and orientation of trigonal carboxyl esters and tetrahedral alkylphosphonyl esters in cholinesterases. Biochemistry. 1995 Sep 12;34(36):11528–11536. doi: 10.1021/bi00036a028. [DOI] [PubMed] [Google Scholar]
- Hosea N. A., Radić Z., Tsigelny I., Berman H. A., Quinn D. M., Taylor P. Aspartate 74 as a primary determinant in acetylcholinesterase governing specificity to cationic organophosphonates. Biochemistry. 1996 Aug 20;35(33):10995–11004. doi: 10.1021/bi9611220. [DOI] [PubMed] [Google Scholar]
- Kaplan D., Ordentlich A., Barak D., Ariel N., Kronman C., Velan B., Shafferman A. Does "butyrylization" of acetylcholinesterase through substitution of the six divergent aromatic amino acids in the active center gorge generate an enzyme mimic of butyrylcholinesterase? Biochemistry. 2001 Jun 26;40(25):7433–7445. doi: 10.1021/bi010181x. [DOI] [PubMed] [Google Scholar]
- Kovarik Z., Radić Z., Grgas B., Skrinjarić-Spoljar M., Reiner E., Simeon-Rudolf V. Amino acid residues involved in the interaction of acetylcholinesterase and butyrylcholinesterase with the carbamates Ro 02-0683 and bambuterol, and with terbutaline. Biochim Biophys Acta. 1999 Aug 17;1433(1-2):261–271. doi: 10.1016/s0167-4838(99)00124-7. [DOI] [PubMed] [Google Scholar]
- Levy D., Ashani Y. Synthesis and in vitro properties of a powerful quaternary methylphosphonate inhibitor of acetylcholinesterase. A new marker in blood-brain barrier research. Biochem Pharmacol. 1986 Apr 1;35(7):1079–1085. doi: 10.1016/0006-2952(86)90142-5. [DOI] [PubMed] [Google Scholar]
- Luo C., Saxena A., Smith M., Garcia G., Radić Z., Taylor P., Doctor B. P. Phosphoryl oxime inhibition of acetylcholinesterase during oxime reactivation is prevented by edrophonium. Biochemistry. 1999 Aug 3;38(31):9937–9947. doi: 10.1021/bi9905720. [DOI] [PubMed] [Google Scholar]
- Marchot P., Ravelli R. B., Raves M. L., Bourne Y., Vellom D. C., Kanter J., Camp S., Sussman J. L., Taylor P. Soluble monomeric acetylcholinesterase from mouse: expression, purification, and crystallization in complex with fasciculin. Protein Sci. 1996 Apr;5(4):672–679. doi: 10.1002/pro.5560050411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masson P., Froment M. T., Bartels C. F., Lockridge O. Asp7O in the peripheral anionic site of human butyrylcholinesterase. Eur J Biochem. 1996 Jan 15;235(1-2):36–48. doi: 10.1111/j.1432-1033.1996.00036.x. [DOI] [PubMed] [Google Scholar]
- Millard C. B., Kryger G., Ordentlich A., Greenblatt H. M., Harel M., Raves M. L., Segall Y., Barak D., Shafferman A., Silman I. Crystal structures of aged phosphonylated acetylcholinesterase: nerve agent reaction products at the atomic level. Biochemistry. 1999 Jun 1;38(22):7032–7039. doi: 10.1021/bi982678l. [DOI] [PubMed] [Google Scholar]
- Ordentlich A., Barak D., Kronman C., Ariel N., Segall Y., Velan B., Shafferman A. The architecture of human acetylcholinesterase active center probed by interactions with selected organophosphate inhibitors. J Biol Chem. 1996 May 17;271(20):11953–11962. doi: 10.1074/jbc.271.20.11953. [DOI] [PubMed] [Google Scholar]
- Ordentlich A., Barak D., Kronman C., Benschop H. P., De Jong L. P., Ariel N., Barak R., Segall Y., Velan B., Shafferman A. Exploring the active center of human acetylcholinesterase with stereomers of an organophosphorus inhibitor with two chiral centers. Biochemistry. 1999 Mar 9;38(10):3055–3066. doi: 10.1021/bi982261f. [DOI] [PubMed] [Google Scholar]
- Ordentlich A., Barak D., Kronman C., Flashner Y., Leitner M., Segall Y., Ariel N., Cohen S., Velan B., Shafferman A. Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket. J Biol Chem. 1993 Aug 15;268(23):17083–17095. [PubMed] [Google Scholar]
- Radić Z., Pickering N. A., Vellom D. C., Camp S., Taylor P. Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry. 1993 Nov 16;32(45):12074–12084. doi: 10.1021/bi00096a018. [DOI] [PubMed] [Google Scholar]
- Ralston J. S., Main A. R., Kilpatrick B. F., Chasson A. L. Use of procainamide gels in the purification of human and horse serum cholinesterases. Biochem J. 1983 Apr 1;211(1):243–250. doi: 10.1042/bj2110243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shafferman A., Velan B., Ordentlich A., Kronman C., Grosfeld H., Leitner M., Flashner Y., Cohen S., Barak D., Ariel N. Substrate inhibition of acetylcholinesterase: residues affecting signal transduction from the surface to the catalytic center. EMBO J. 1992 Oct;11(10):3561–3568. doi: 10.1002/j.1460-2075.1992.tb05439.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shi Jianxin, Radic' Zoran, Taylor Palmer. Inhibitors of different structure induce distinguishing conformations in the omega loop, Cys69-Cys96, of mouse acetylcholinesterase. J Biol Chem. 2002 Aug 24;277(45):43301–43308. doi: 10.1074/jbc.M204391200. [DOI] [PubMed] [Google Scholar]
- Simeon-Rudolf V., Reiner E., Evans R. T., George P. M., Potter H. C. Catalytic parameters for the hydrolysis of butyrylthiocholine by human serum butyrylcholinesterase variants. Chem Biol Interact. 1999 May 14;119-120:165–171. doi: 10.1016/s0009-2797(99)00025-3. [DOI] [PubMed] [Google Scholar]
- Taylor P., Hosea N. A., Tsigelny I., Radić Z., Berman H. A. Determining ligand orientation and transphosphonylation mechanisms on acetylcholinesterase by Rp, Sp enantiomer selectivity and site-specific mutagenesis. Enantiomer. 1997;2(3-4):249–260. [PubMed] [Google Scholar]
- Taylor P., Radić Z. The cholinesterases: from genes to proteins. Annu Rev Pharmacol Toxicol. 1994;34:281–320. doi: 10.1146/annurev.pa.34.040194.001433. [DOI] [PubMed] [Google Scholar]
- Vellom D. C., Radić Z., Li Y., Pickering N. A., Camp S., Taylor P. Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry. 1993 Jan 12;32(1):12–17. doi: 10.1021/bi00052a003. [DOI] [PubMed] [Google Scholar]
- Wong L., Radic Z., Brüggemann R. J., Hosea N., Berman H. A., Taylor P. Mechanism of oxime reactivation of acetylcholinesterase analyzed by chirality and mutagenesis. Biochemistry. 2000 May 16;39(19):5750–5757. doi: 10.1021/bi992906r. [DOI] [PubMed] [Google Scholar]