Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jul 1;373(Pt 1):305–311. doi: 10.1042/BJ20030184

Proteus mirabilis glutathione S-transferase B1-1 is involved in protective mechanisms against oxidative and chemical stresses.

Nerino Allocati 1, Bartolo Favaloro 1, Michele Masulli 1, Mikhail F Alexeyev 1, Carmine Di Ilio 1
PMCID: PMC1223472  PMID: 12667139

Abstract

We investigated the effects of several xenobiotics, including antimicrobial agents and general stress factors such as starvation, heat and osmotic shock, on the modulation of expression of Proteus mirabilis glutathione S-transferase B1-1 (PmGST B1-1). The level of expression of PmGST B1-1 was established by both Western- and Northern-blot experiments. Our results show that several compounds can modulate expression of PmGST B1-1. The level of PmGST B1-1 increased when bacterial cells were exposed to a variety of stresses such as 1-chloro-2,4-dinitrobenzene, H(2)O(2), fosfomycin or tetracycline. A knock-out gst B gene was also constructed using the suicide vector pKNOCKlox-Ap. Successful inactivation of the wild-type gene was confirmed by PCR, DNA sequence analysis and Western blotting. Under normal culture conditions, this mutant was viable and displayed no significant phenotypic differences compared with the wild-type. However, viability tests revealed that the null mutant was more sensitive to oxidative stress in the form of H(2)O(2) and to several antimicrobial drugs when compared with the wild-type. These results suggest that PmGST B1-1 has an active role in the protection against oxidative stress generated by H(2)O(2) and it appears to be involved in the detoxification of antimicrobial agents.

Full Text

The Full Text of this article is available as a PDF (158.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexeyev M. F. The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques. 1999 May;26(5):824-6, 828. doi: 10.2144/99265bm05. [DOI] [PubMed] [Google Scholar]
  2. Allocati N., Casalone E., Masulli M., Ceccarelli I., Carletti E., Parker M. W., Di Ilio C. Functional analysis of the evolutionarily conserved proline 53 residue in Proteus mirabilis glutathione transferase B1-1. FEBS Lett. 1999 Feb 26;445(2-3):347–350. doi: 10.1016/s0014-5793(99)00147-7. [DOI] [PubMed] [Google Scholar]
  3. Allocati N., Casalone E., Masulli M., Polekhina G., Rossjohn J., Parker M. W., Di Ilio C. Evaluation of the role of two conserved active-site residues in beta class glutathione S-transferases. Biochem J. 2000 Oct 15;351(Pt 2):341–346. [PMC free article] [PubMed] [Google Scholar]
  4. Allocati N., Cellini L., Aceto A., Iezzi T., Angelucci S., Robuffo I., Di Ilio C. Immunogold localization of glutathione transferase B1-1 in Proteus mirabilis. FEBS Lett. 1994 Nov 7;354(2):191–194. doi: 10.1016/0014-5793(94)01115-x. [DOI] [PubMed] [Google Scholar]
  5. Allocati Nerino, Masulli Michele, Casalone Enrico, Santucci Silvia, Favaloro Bartolo, Parker Michael W., Di Ilio Carmine. Glutamic acid-65 is an essential residue for catalysis in Proteus mirabilis glutathione S-transferase B1-1. Biochem J. 2002 Apr 1;363(Pt 1):189–193. doi: 10.1042/0264-6021:3630189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Armstrong R. N. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol. 1997 Jan;10(1):2–18. doi: 10.1021/tx960072x. [DOI] [PubMed] [Google Scholar]
  7. Belas R., Erskine D., Flaherty D. Transposon mutagenesis in Proteus mirabilis. J Bacteriol. 1991 Oct;173(19):6289–6293. doi: 10.1128/jb.173.19.6289-6293.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  9. Caccuri Anna Maria, Antonini Giovanni, Allocati Nerino, Di Ilio Carmine, De Maria Francesca, Innocenti Federica, Parker Michael W., Masulli Michele, Lo Bello Mario, Turella Paola. GSTB1-1 from Proteus mirabilis: a snapshot of an enzyme in the evolutionary pathway from a redox enzyme to a conjugating enzyme. J Biol Chem. 2002 Mar 11;277(21):18777–18784. doi: 10.1074/jbc.M201137200. [DOI] [PubMed] [Google Scholar]
  10. Caccuri Anna Maria, Antonini Giovanni, Allocati Nerino, Di Ilio Carmine, Innocenti Federica, De Maria Francesca, Parker Michael W., Masulli Michele, Polizio Francesca, Federici Giorgio. Properties and utility of the peculiar mixed disulfide in the bacterial glutathione transferase B1-1. Biochemistry. 2002 Apr 9;41(14):4686–4693. doi: 10.1021/bi0158425. [DOI] [PubMed] [Google Scholar]
  11. Casalone E., Allocati N., Ceccarelli I., Masulli M., Rossjohn J., Parker M. W., Di Ilio C. Site-directed mutagenesis of the Proteus mirabilis glutathione transferase B1-1 G-site. FEBS Lett. 1998 Feb 20;423(2):122–124. doi: 10.1016/s0014-5793(98)00080-5. [DOI] [PubMed] [Google Scholar]
  12. Di Ilio C., Aceto A., Piccolomini R., Allocati N., Faraone A., Cellini L., Ravagnan G., Federici G. Purification and characterization of three forms of glutathione transferase from Proteus mirabilis. Biochem J. 1988 Nov 1;255(3):971–975. doi: 10.1042/bj2550971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Favaloro B., Tamburro A., Trofino M. A., Bologna L., Rotilio D., Heipieper H. J. Modulation of the glutathione S-transferase in Ochrobactrum anthropi: function of xenobiotic substrates and other forms of stress. Biochem J. 2000 Mar 1;346(Pt 2):553–559. [PMC free article] [PubMed] [Google Scholar]
  14. Habig W. H., Jakoby W. B. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 1981;77:398–405. doi: 10.1016/s0076-6879(81)77053-8. [DOI] [PubMed] [Google Scholar]
  15. Hayes J. D., McLellan L. I. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res. 1999 Oct;31(4):273–300. doi: 10.1080/10715769900300851. [DOI] [PubMed] [Google Scholar]
  16. Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
  17. Jakobsson P. J., Morgenstern R., Mancini J., Ford-Hutchinson A., Persson B. Common structural features of MAPEG -- a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Sci. 1999 Mar;8(3):689–692. doi: 10.1110/ps.8.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. La Roche S. D., Leisinger T. Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione S-transferase supergene family. J Bacteriol. 1990 Jan;172(1):164–171. doi: 10.1128/jb.172.1.164-171.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Mannervik B., Danielson U. H. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337. doi: 10.3109/10409238809088226. [DOI] [PubMed] [Google Scholar]
  21. Masai E., Katayama Y., Kubota S., Kawai S., Yamasaki M., Morohoshi N. A bacterial enzyme degrading the model lignin compound beta-etherase is a member of the glutathione-S-transferase superfamily. FEBS Lett. 1993 May 24;323(1-2):135–140. doi: 10.1016/0014-5793(93)81465-c. [DOI] [PubMed] [Google Scholar]
  22. McCue L., Thompson W., Carmack C., Ryan M. P., Liu J. S., Derbyshire V., Lawrence C. E. Phylogenetic footprinting of transcription factor binding sites in proteobacterial genomes. Nucleic Acids Res. 2001 Feb 1;29(3):774–782. doi: 10.1093/nar/29.3.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mignogna G., Allocati N., Aceto A., Piccolomini R., Di Ilio C., Barra D., Martini F. The amino acid sequence of glutathione transferase from Proteus mirabilis, a prototype of a new class of enzymes. Eur J Biochem. 1993 Feb 1;211(3):421–425. doi: 10.1111/j.1432-1033.1993.tb17566.x. [DOI] [PubMed] [Google Scholar]
  24. Orser C. S., Dutton J., Lange C., Jablonski P., Xun L., Hargis M. Characterization of a Flavobacterium glutathione S-transferase gene involved reductive dechlorination. J Bacteriol. 1993 May;175(9):2640–2644. doi: 10.1128/jb.175.9.2640-2644.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Perito B., Allocati N., Casalone E., Masulli M., Dragani B., Polsinelli M., Aceto A., Di Ilio C. Molecular cloning and overexpression of a glutathione transferase gene from Proteus mirabilis. Biochem J. 1996 Aug 15;318(Pt 1):157–162. doi: 10.1042/bj3180157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Piccolomini R., Di Ilio C., Aceto A., Allocati N., Faraone A., Cellini L., Ravagnan G., Federici G. Glutathione transferase in bacteria: subunit composition and antigenic characterization. J Gen Microbiol. 1989 Nov;135(11):3119–3125. doi: 10.1099/00221287-135-11-3119. [DOI] [PubMed] [Google Scholar]
  27. Rossjohn J., Polekhina G., Feil S. C., Allocati N., Masulli M., Di Illio C., Parker M. W. A mixed disulfide bond in bacterial glutathione transferase: functional and evolutionary implications. Structure. 1998 Jun 15;6(6):721–734. doi: 10.1016/s0969-2126(98)00074-4. [DOI] [PubMed] [Google Scholar]
  28. Schneider T. D. Information content of individual genetic sequences. J Theor Biol. 1997 Dec 21;189(4):427–441. doi: 10.1006/jtbi.1997.0540. [DOI] [PubMed] [Google Scholar]
  29. Sheehan D., Meade G., Foley V. M., Dowd C. A. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J. 2001 Nov 15;360(Pt 1):1–16. doi: 10.1042/0264-6021:3600001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Veal Elizabeth A., Toone W. Mark, Jones Nic, Morgan Brian A. Distinct roles for glutathione S-transferases in the oxidative stress response in Schizosaccharomyces pombe. J Biol Chem. 2002 Jun 12;277(38):35523–35531. doi: 10.1074/jbc.M111548200. [DOI] [PubMed] [Google Scholar]
  31. Vuilleumier S. Bacterial glutathione S-transferases: what are they good for? J Bacteriol. 1997 Mar;179(5):1431–1441. doi: 10.1128/jb.179.5.1431-1441.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vuilleumier S., Pagni M. The elusive roles of bacterial glutathione S-transferases: new lessons from genomes. Appl Microbiol Biotechnol. 2002 Feb;58(2):138–146. doi: 10.1007/s00253-001-0836-0. [DOI] [PubMed] [Google Scholar]
  33. Zheng M., Wang X., Doan B., Lewis K. A., Schneider T. D., Storz G. Computation-directed identification of OxyR DNA binding sites in Escherichia coli. J Bacteriol. 2001 Aug;183(15):4571–4579. doi: 10.1128/JB.183.15.4571-4579.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES