Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jul 1;373(Pt 1):41–48. doi: 10.1042/BJ20021876

Substrate (aglycone) specificity of human cytosolic beta-glucosidase.

Jean-Guy Berrin 1, Mirjam Czjzek 1, Paul A Kroon 1, W Russell McLauchlan 1, Antoine Puigserver 1, Gary Williamson 1, Nathalie Juge 1
PMCID: PMC1223474  PMID: 12667141

Abstract

Human cytosolic beta-glucosidase (hCBG) is a xenobiotic-metabolizing enzyme that hydrolyses certain flavonoid glucosides, with specificity depending on the aglycone moiety, the type of sugar and the linkage between them. Based upon the X-ray structure of Zea mays beta-glucosidase, we generated a three-dimensional model of hCBG by homology modelling. The enzyme exhibited the (beta/alpha)(8)-barrel fold characteristic of family 1 beta-glucosidases, with structural differences being confined mainly to loop regions. Based on the substrate specificity of the human enzymes, sequence alignment of family 1 enzymes and analysis of the hCBG structural model, we selected and mutated putative substrate (aglycone) binding site residues. Four single mutants (Val(168)-->Tyr, Phe(225)-->Ser, Tyr(308)-->Ala and Tyr(308)-->Phe) were expressed in Pichia pastoris, purified and characterized. All mutant proteins showed a decrease in activity towards a broad range of substrates. The Val(168)-->Tyr mutation did not affect K (m) on p -nitrophenyl ( p NP)-glycosides, but increased K (m) 5-fold on flavonoid glucosides, providing the first biochemical evidence supporting a role for this residue in aglycone-binding of the substrate, a finding consistent with our three-dimensional model. The Phe(225)-->Ser and Tyr(308)-->Ala mutations, and, to a lesser degree, the Tyr(308)-->Phe mutation, resulted in a drastic decrease in specific activities towards all substrates tested, indicating an important role of those residues in catalysis. Taken together with the three-dimensional model, these mutation studies identified the amino-acid residues in the aglycone-binding subsite of hCBG that are essential for flavonoid glucoside binding and catalysis.

Full Text

The Full Text of this article is available as a PDF (240.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar C. F., Sanderson I., Moracci M., Ciaramella M., Nucci R., Rossi M., Pearl L. H. Crystal structure of the beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus: resilience as a key factor in thermostability. J Mol Biol. 1997 Sep 5;271(5):789–802. doi: 10.1006/jmbi.1997.1215. [DOI] [PubMed] [Google Scholar]
  2. Arribas J. C., Herrero A. G., Martín-Lomas M., Cañada F. J., He S., Withers S. G. Differential mechanism-based labeling and unequivocal activity assignment of the two active sites of intestinal lactase/phlorizin hydrolase. Eur J Biochem. 2000 Dec;267(24):6996–7005. doi: 10.1046/j.1432-1327.2000.01784.x. [DOI] [PubMed] [Google Scholar]
  3. Barrett T., Suresh C. G., Tolley S. P., Dodson E. J., Hughes M. A. The crystal structure of a cyanogenic beta-glucosidase from white clover, a family 1 glycosyl hydrolase. Structure. 1995 Sep 15;3(9):951–960. doi: 10.1016/s0969-2126(01)00229-5. [DOI] [PubMed] [Google Scholar]
  4. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  5. Berrin Jean-Guy, McLauchlan W. Russell, Needs Paul, Williamson Gary, Puigserver Antoine, Kroon Paul A., Juge Nathalie. Functional expression of human liver cytosolic beta-glucosidase in Pichia pastoris. Insights into its role in the metabolism of dietary glucosides. Eur J Biochem. 2002 Jan;269(1):249–258. doi: 10.1046/j.0014-2956.2001.02641.x. [DOI] [PubMed] [Google Scholar]
  6. Burmeister W. P., Cottaz S., Driguez H., Iori R., Palmieri S., Henrissat B. The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure. 1997 May 15;5(5):663–675. doi: 10.1016/s0969-2126(97)00221-9. [DOI] [PubMed] [Google Scholar]
  7. Chi Y. I., Martinez-Cruz L. A., Jancarik J., Swanson R. V., Robertson D. E., Kim S. H. Crystal structure of the beta-glycosidase from the hyperthermophile Thermosphaera aggregans: insights into its activity and thermostability. FEBS Lett. 1999 Feb 26;445(2-3):375–383. doi: 10.1016/s0014-5793(99)00090-3. [DOI] [PubMed] [Google Scholar]
  8. Cregg J. M., Barringer K. J., Hessler A. Y., Madden K. R. Pichia pastoris as a host system for transformations. Mol Cell Biol. 1985 Dec;5(12):3376–3385. doi: 10.1128/mcb.5.12.3376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Czjzek M., Cicek M., Zamboni V., Bevan D. R., Henrissat B., Esen A. The mechanism of substrate (aglycone) specificity in beta -glucosidases is revealed by crystal structures of mutant maize beta -glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13555–13560. doi: 10.1073/pnas.97.25.13555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Czjzek M., Cicek M., Zamboni V., Burmeister W. P., Bevan D. R., Henrissat B., Esen A. Crystal structure of a monocotyledon (maize ZMGlu1) beta-glucosidase and a model of its complex with p-nitrophenyl beta-D-thioglucoside. Biochem J. 2001 Feb 15;354(Pt 1):37–46. doi: 10.1042/0264-6021:3540037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Daniels L. B., Coyle P. J., Chiao Y. B., Glew R. H., Labow R. S. Purification and characterization of a cytosolic broad specificity beta-glucosidase from human liver. J Biol Chem. 1981 Dec 25;256(24):13004–13013. [PubMed] [Google Scholar]
  12. Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure. 1995 Sep 15;3(9):853–859. doi: 10.1016/S0969-2126(01)00220-9. [DOI] [PubMed] [Google Scholar]
  13. Day A. J., Cañada F. J., Díaz J. C., Kroon P. A., Mclauchlan R., Faulds C. B., Plumb G. W., Morgan M. R., Williamson G. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 2000 Feb 25;468(2-3):166–170. doi: 10.1016/s0014-5793(00)01211-4. [DOI] [PubMed] [Google Scholar]
  14. Gopalan V., Daniels L. B., Glew R. H., Claeyssens M. Kinetic analysis of the interaction of alkyl glycosides with two human beta-glucosidases. Biochem J. 1989 Sep 1;262(2):541–548. doi: 10.1042/bj2620541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gopalan V., Vander Jagt D. J., Libell D. P., Glew R. H. Transglucosylation as a probe of the mechanism of action of mammalian cytosolic beta-glucosidase. J Biol Chem. 1992 May 15;267(14):9629–9638. [PubMed] [Google Scholar]
  16. Hakulinen N., Paavilainen S., Korpela T., Rouvinen J. The crystal structure of beta-glucosidase from Bacillus circulans sp. alkalophilus: ability to form long polymeric assemblies. J Struct Biol. 2000 Feb;129(1):69–79. doi: 10.1006/jsbi.1999.4206. [DOI] [PubMed] [Google Scholar]
  17. Hays W. S., VanderJagt D. J., Bose B., Serianni A. S., Glew R. H. Catalytic mechanism and specificity for hydrolysis and transglycosylation reactions of cytosolic beta-glucosidase from guinea pig liver. J Biol Chem. 1998 Dec 25;273(52):34941–34948. doi: 10.1074/jbc.273.52.34941. [DOI] [PubMed] [Google Scholar]
  18. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Henrissat B., Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem J. 1996 Jun 1;316(Pt 2):695–696. doi: 10.1042/bj3160695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Henrissat B., Callebaut I., Fabrega S., Lehn P., Mornon J. P., Davies G. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):7090–7094. doi: 10.1073/pnas.92.15.7090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Henrissat B., Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997 Oct;7(5):637–644. doi: 10.1016/s0959-440x(97)80072-3. [DOI] [PubMed] [Google Scholar]
  22. Hinnen A., Hicks J. B., Fink G. R. Transformation of yeast. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1929–1933. doi: 10.1073/pnas.75.4.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kaper T., Lebbink J. H., Pouwels J., Kopp J., Schulz G. E., van der Oost J., de Vos W. M. Comparative structural analysis and substrate specificity engineering of the hyperthermostable beta-glucosidase CelB from Pyrococcus furiosus. Biochemistry. 2000 May 2;39(17):4963–4970. doi: 10.1021/bi992463r. [DOI] [PubMed] [Google Scholar]
  24. Keresztessy Z., Brown K., Dunn M. A., Hughes M. A. Identification of essential active-site residues in the cyanogenic beta-glucosidase (linamarase) from cassava (Manihot esculenta Crantz) by site-directed mutagenesis. Biochem J. 2001 Jan 15;353(Pt 2):199–205. doi: 10.1042/0264-6021:3530199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. LaMarco K. L., Glew R. H. Galactosylsphingosine inhibition of the broad-specificity cytosolic beta-glucosidase of human liver. Arch Biochem Biophys. 1985 Feb 1;236(2):669–676. doi: 10.1016/0003-9861(85)90672-1. [DOI] [PubMed] [Google Scholar]
  26. Lambert N., Kroon P. A., Faulds C. B., Plumb G. W., McLauchlan W. R., Day A. J., Williamson G. Purification of cytosolic beta-glucosidase from pig liver and its reactivity towards flavonoid glycosides. Biochim Biophys Acta. 1999 Nov 16;1435(1-2):110–116. doi: 10.1016/s0167-4838(99)00213-7. [DOI] [PubMed] [Google Scholar]
  27. Legler G., Bieberich E. Active site directed inhibition of a cytosolic beta-glucosidase from calf liver by bromoconduritol B epoxide and bromoconduritol F. Arch Biochem Biophys. 1988 Jan;260(1):437–442. doi: 10.1016/0003-9861(88)90467-5. [DOI] [PubMed] [Google Scholar]
  28. Marques Ana Rita, Coutinho Pedro M., Videira Paula, Fialho Arsénio M., Sá-Correia Isabel. Sphingomonas paucimobilis beta-glucosidase Bgl1: a member of a new bacterial subfamily in glycoside hydrolase family 1. Biochem J. 2003 Mar 15;370(Pt 3):793–804. doi: 10.1042/BJ20021249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mayer C., Zechel D. L., Reid S. P., Warren R. A., Withers S. G. The E358S mutant of Agrobacterium sp. beta-glucosidase is a greatly improved glycosynthase. FEBS Lett. 2000 Jan 21;466(1):40–44. doi: 10.1016/s0014-5793(99)01751-2. [DOI] [PubMed] [Google Scholar]
  30. Németh Kitti, Plumb Geoff W., Berrin Jean-Guy, Juge Nathalie, Jacob Ralf, Naim Hassan Y., Williamson Gary, Swallow Dallas M., Kroon Paul A. Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur J Nutr. 2003 Jan;42(1):29–42. doi: 10.1007/s00394-003-0397-3. [DOI] [PubMed] [Google Scholar]
  31. Pócsi I., Kiss L. Kinetic studies on the broad-specificity beta-D-glucosidase from pig kidney. Biochem J. 1988 Nov 15;256(1):139–146. doi: 10.1042/bj2560139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
  33. Sanz-Aparicio J., Hermoso J. A., Martínez-Ripoll M., Lequerica J. L., Polaina J. Crystal structure of beta-glucosidase A from Bacillus polymyxa: insights into the catalytic activity in family 1 glycosyl hydrolases. J Mol Biol. 1998 Jan 23;275(3):491–502. doi: 10.1006/jmbi.1997.1467. [DOI] [PubMed] [Google Scholar]
  34. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wiesmann C., Beste G., Hengstenberg W., Schulz G. E. The three-dimensional structure of 6-phospho-beta-galactosidase from Lactococcus lactis. Structure. 1995 Sep 15;3(9):961–968. doi: 10.1016/s0969-2126(01)00230-1. [DOI] [PubMed] [Google Scholar]
  36. Zecca L., Mesonero J. E., Stutz A., Poirée J. C., Giudicelli J., Cursio R., Gloor S. M., Semenza G. Intestinal lactase-phlorizin hydrolase (LPH): the two catalytic sites; the role of the pancreas in pro-LPH maturation. FEBS Lett. 1998 Sep 18;435(2-3):225–228. doi: 10.1016/s0014-5793(98)01076-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES