Abstract
The PHEX gene (phosphate-regulating gene with homologies to endopeptidases on the X chromosome) encodes a protein (PHEX) with structural homologies to members of the M13 family of zinc metallo-endopeptidases. Mutations in the PHEX gene are responsible for X-linked hypophosphataemia in humans. However, the mechanism by which loss of PHEX function results in the disease phenotype, and the endogenous PHEX substrate(s) remain unknown. In order to study PHEX substrate specificity, combinatorial fluorescent-quenched peptide libraries containing o -aminobenzoic acid (Abz) and 2,4-dinitrophenyl (Dnp) as the donor-acceptor pair were synthesized and tested as PHEX substrates. PHEX showed a strict requirement for acidic amino acid residues (aspartate or glutamate) in S(1)' subsite, with a strong preference for aspartate. Subsites S(2)', S(1) and S(2) exhibited less defined specificity requirements, but the presence of leucine, proline or glycine in P(2)', or valine, isoleucine or histidine in P(1) precluded hydrolysis of the substrate by the enzyme. The peptide Abz-GFSDYK(Dnp)-OH, which contains the most favourable residues in the P(2) to P(2)' positions, was hydrolysed by PHEX at the N-terminus of aspartate with a k(cat)/ K(m) of 167 mM(-1) x s(-1). In addition, using quenched fluorescence peptides derived from fibroblast growth factor-23 and matrix extracellular phosphoglycoprotein sequences flanked by Abz and N -(2,4-dinitrophenyl)ethylenediamine, we showed that these physiologically relevant proteins are potential PHEX substrates. Finally, our results clearly indicate that PHEX does not have neprilysin-like substrate specificity.
Full Text
The Full Text of this article is available as a PDF (178.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Araujo M. C., Melo R. L., Cesari M. H., Juliano M. A., Juliano L., Carmona A. K. Peptidase specificity characterization of C- and N-terminal catalytic sites of angiotensin I-converting enzyme. Biochemistry. 2000 Jul 25;39(29):8519–8525. doi: 10.1021/bi9928905. [DOI] [PubMed] [Google Scholar]
- Argiro L., Desbarats M., Glorieux F. H., Ecarot B. Mepe, the gene encoding a tumor-secreted protein in oncogenic hypophosphatemic osteomalacia, is expressed in bone. Genomics. 2001 Jun 15;74(3):342–351. doi: 10.1006/geno.2001.6553. [DOI] [PubMed] [Google Scholar]
- Backes B. J., Harris J. L., Leonetti F., Craik C. S., Ellman J. A. Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin. Nat Biotechnol. 2000 Feb;18(2):187–193. doi: 10.1038/72642. [DOI] [PubMed] [Google Scholar]
- Beaumont A., Le Moual H., Boileau G., Crine P., Roques B. P. Evidence that both arginine 102 and arginine 747 are involved in substrate binding to neutral endopeptidase (EC 3.4.24.11). J Biol Chem. 1991 Jan 5;266(1):214–220. [PubMed] [Google Scholar]
- Beck L., Soumounou Y., Martel J., Krishnamurthy G., Gauthier C., Goodyer C. G., Tenenhouse H. S. Pex/PEX tissue distribution and evidence for a deletion in the 3' region of the Pex gene in X-linked hypophosphatemic mice. J Clin Invest. 1997 Mar 15;99(6):1200–1209. doi: 10.1172/JCI119276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blydt-Hansen T. D., Tenenhouse H. S., Goodyer P. PHEX expression in parathyroid gland and parathyroid hormone dysregulation in X-linked hypophosphatemia. Pediatr Nephrol. 1999 Sep;13(7):607–611. doi: 10.1007/s004670050669. [DOI] [PubMed] [Google Scholar]
- Boileau G., Tenenhouse H. S., Desgroseillers L., Crine P. Characterization of PHEX endopeptidase catalytic activity: identification of parathyroid-hormone-related peptide107-139 as a substrate and osteocalcin, PPi and phosphate as inhibitors. Biochem J. 2001 May 1;355(Pt 3):707–713. doi: 10.1042/bj3550707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonvouloir N., Lemieux N., Crine P., Boileau G., DesGroseillers L. Molecular cloning, tissue distribution, and chromosomal localization of MMEL2, a gene coding for a novel human member of the neutral endopeptidase-24.11 family. DNA Cell Biol. 2001 Aug;20(8):493–498. doi: 10.1089/104454901316976127. [DOI] [PubMed] [Google Scholar]
- Bowe A. E., Finnegan R., Jan de Beur S. M., Cho J., Levine M. A., Kumar R., Schiavi S. C. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun. 2001 Jun 22;284(4):977–981. doi: 10.1006/bbrc.2001.5084. [DOI] [PubMed] [Google Scholar]
- De Beur Suzanne M. Jan, Finnegan Richard B., Vassiliadis John, Cook Brian, Barberio Dana, Estes Scott, Manavalan Partha, Petroziello Joseph, Madden Stephen L., Cho Justin Y. Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. J Bone Miner Res. 2002 Jun;17(6):1102–1110. doi: 10.1359/jbmr.2002.17.6.1102. [DOI] [PubMed] [Google Scholar]
- Du L., Desbarats M., Viel J., Glorieux F. H., Cawthorn C., Ecarot B. cDNA cloning of the murine Pex gene implicated in X-linked hypophosphatemia and evidence for expression in bone. Genomics. 1996 Aug 15;36(1):22–28. doi: 10.1006/geno.1996.0421. [DOI] [PubMed] [Google Scholar]
- Econs M. J., Drezner M. K. Tumor-induced osteomalacia--unveiling a new hormone. N Engl J Med. 1994 Jun 9;330(23):1679–1681. doi: 10.1056/NEJM199406093302310. [DOI] [PubMed] [Google Scholar]
- Fossiez F., Lemay G., Labonté N., Parmentier-Lesage F., Boileau G., Crine P. Secretion of a functional soluble form of neutral endopeptidase-24.11 from a baculovirus-infected insect cell line. Biochem J. 1992 May 15;284(Pt 1):53–59. doi: 10.1042/bj2840053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghaddar G., Ruchon A. F., Carpentier M., Marcinkiewicz M., Seidah N. G., Crine P., Desgroseillers L., Boileau G. Molecular cloning and biochemical characterization of a new mouse testis soluble-zinc-metallopeptidase of the neprilysin family. Biochem J. 2000 Apr 15;347(Pt 2):419–429. doi: 10.1042/0264-6021:3470419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grieff M., Mumm S., Waeltz P., Mazzarella R., Whyte M. P., Thakker R. V., Schlessinger D. Expression and cloning of the human X-linked hypophosphatemia gene cDNA. Biochem Biophys Res Commun. 1997 Feb 24;231(3):635–639. doi: 10.1006/bbrc.1997.6153. [DOI] [PubMed] [Google Scholar]
- Guo R., Liu S., Spurney R. F., Quarles L. D. Analysis of recombinant Phex: an endopeptidase in search of a substrate. Am J Physiol Endocrinol Metab. 2001 Oct;281(4):E837–E847. doi: 10.1152/ajpendo.2001.281.4.E837. [DOI] [PubMed] [Google Scholar]
- Guo R., Quarles L. D. Cloning and sequencing of human PEX from a bone cDNA library: evidence for its developmental stage-specific regulation in osteoblasts. J Bone Miner Res. 1997 Jul;12(7):1009–1017. doi: 10.1359/jbmr.1997.12.7.1009. [DOI] [PubMed] [Google Scholar]
- Harris J. L., Backes B. J., Leonetti F., Mahrus S., Ellman J. A., Craik C. S. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7754–7759. doi: 10.1073/pnas.140132697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herman L. W., Tarr G., Kates S. A. Optimization of the synthesis of peptide combinatorial libraries using a one-pot method. Mol Divers. 1997;2(3):147–155. doi: 10.1007/BF01682202. [DOI] [PubMed] [Google Scholar]
- Ikeda K., Emoto N., Raharjo S. B., Nurhantari Y., Saiki K., Yokoyama M., Matsuo M. Molecular identification and characterization of novel membrane-bound metalloprotease, the soluble secreted form of which hydrolyzes a variety of vasoactive peptides. J Biol Chem. 1999 Nov 5;274(45):32469–32477. doi: 10.1074/jbc.274.45.32469. [DOI] [PubMed] [Google Scholar]
- Kiryu-Seo S., Sasaki M., Yokohama H., Nakagomi S., Hirayama T., Aoki S., Wada K., Kiyama H. Damage-induced neuronal endopeptidase (DINE) is a unique metallopeptidase expressed in response to neuronal damage and activates superoxide scavengers. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4345–4350. doi: 10.1073/pnas.070509897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lajeunesse D., Meyer R. A., Jr, Hamel L. Direct demonstration of a humorally-mediated inhibition of renal phosphate transport in the Hyp mouse. Kidney Int. 1996 Nov;50(5):1531–1538. doi: 10.1038/ki.1996.468. [DOI] [PubMed] [Google Scholar]
- Lipman M. L., Panda D., Bennett H. P., Henderson J. E., Shane E., Shen Y., Goltzman D., Karaplis A. C. Cloning of human PEX cDNA. Expression, subcellular localization, and endopeptidase activity. J Biol Chem. 1998 May 29;273(22):13729–13737. doi: 10.1074/jbc.273.22.13729. [DOI] [PubMed] [Google Scholar]
- Marsh W. L. Molecular biology of blood groups: cloning the Kell gene. Transfusion. 1992 Feb;32(2):98–101. doi: 10.1046/j.1537-2995.1992.32292180158.x. [DOI] [PubMed] [Google Scholar]
- Medeiros M. A., França M. S., Boileau G., Juliano L., Carvalho K. M. Specific fluorogenic substrates for neprilysin (neutral endopeptidase, EC 3.4.24.11) which are highly resistant to serine- and metalloproteases. Braz J Med Biol Res. 1997 Oct;30(10):1157–1162. doi: 10.1590/s0100-879x1997001000003. [DOI] [PubMed] [Google Scholar]
- Nesbitt T., Fujiwara I., Thomas R., Xiao Z. S., Quarles L. D., Drezner M. K. Coordinated maturational regulation of PHEX and renal phosphate transport inhibitory activity: evidence for the pathophysiological role of PHEX in X-linked hypophosphatemia. J Bone Miner Res. 1999 Dec;14(12):2027–2035. doi: 10.1359/jbmr.1999.14.12.2027. [DOI] [PubMed] [Google Scholar]
- Oefner C., D'Arcy A., Hennig M., Winkler F. K., Dale G. E. Structure of human neutral endopeptidase (Neprilysin) complexed with phosphoramidon. J Mol Biol. 2000 Feb 18;296(2):341–349. doi: 10.1006/jmbi.1999.3492. [DOI] [PubMed] [Google Scholar]
- Ouimet T., Facchinetti P., Rose C., Bonhomme M. C., Gros C., Schwartz J. C., Tanja O. Neprilysin II: A putative novel metalloprotease and its isoforms in CNS and testis. Biochem Biophys Res Commun. 2000 May 19;271(3):565–570. doi: 10.1006/bbrc.2000.2664. [DOI] [PubMed] [Google Scholar]
- Quarles L. D., Drezner M. K. Pathophysiology of X-linked hypophosphatemia, tumor-induced osteomalacia, and autosomal dominant hypophosphatemia: a perPHEXing problem. J Clin Endocrinol Metab. 2001 Feb;86(2):494–496. doi: 10.1210/jcem.86.2.7302. [DOI] [PubMed] [Google Scholar]
- Roques B. P., Noble F., Daugé V., Fournié-Zaluski M. C., Beaumont A. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev. 1993 Mar;45(1):87–146. [PubMed] [Google Scholar]
- Rowe P. S., de Zoysa P. A., Dong R., Wang H. R., White K. E., Econs M. J., Oudet C. L. MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics. 2000 Jul 1;67(1):54–68. doi: 10.1006/geno.2000.6235. [DOI] [PubMed] [Google Scholar]
- Ruchon A. F., Tenenhouse H. S., Marcinkiewicz M., Siegfried G., Aubin J. E., DesGroseillers L., Crine P., Boileau G. Developmental expression and tissue distribution of Phex protein: effect of the Hyp mutation and relationship to bone markers. J Bone Miner Res. 2000 Aug;15(8):1440–1450. doi: 10.1359/jbmr.2000.15.8.1440. [DOI] [PubMed] [Google Scholar]
- Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
- Schiavi Susan C., Moe Orson W. Phosphatonins: a new class of phosphate-regulating proteins. Curr Opin Nephrol Hypertens. 2002 Jul;11(4):423–430. doi: 10.1097/00041552-200207000-00009. [DOI] [PubMed] [Google Scholar]
- Shimada T., Mizutani S., Muto T., Yoneya T., Hino R., Takeda S., Takeuchi Y., Fujita T., Fukumoto S., Yamashita T. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A. 2001 May 8;98(11):6500–6505. doi: 10.1073/pnas.101545198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimada Takashi, Muto Takanori, Urakawa Itaru, Yoneya Takashi, Yamazaki Yuji, Okawa Katsuya, Takeuchi Yasuhiro, Fujita Toshiro, Fukumoto Seiji, Yamashita Takeyoshi. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology. 2002 Aug;143(8):3179–3182. doi: 10.1210/endo.143.8.8795. [DOI] [PubMed] [Google Scholar]
- Shirotani K., Tsubuki S., Iwata N., Takaki Y., Harigaya W., Maruyama K., Kiryu-Seo S., Kiyama H., Iwata H., Tomita T. Neprilysin degrades both amyloid beta peptides 1-40 and 1-42 most rapidly and efficiently among thiorphan- and phosphoramidon-sensitive endopeptidases. J Biol Chem. 2001 Mar 6;276(24):21895–21901. doi: 10.1074/jbc.M008511200. [DOI] [PubMed] [Google Scholar]
- Tenenhouse H. S. X-linked hypophosphataemia: a homologous disorder in humans and mice. Nephrol Dial Transplant. 1999 Feb;14(2):333–341. doi: 10.1093/ndt/14.2.333. [DOI] [PubMed] [Google Scholar]
- Trapani A. J., De Lombaert S., Kuzmich S., Jeng A. Y. Inhibition of big ET-1-induced pressor response by an orally active dual inhibitor of endothelin-converting enzyme and neutral endopeptidase 24.11. J Cardiovasc Pharmacol. 1995;26 (Suppl 3):S69–S71. [PubMed] [Google Scholar]
- Turner A. J., Tanzawa K. Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. FASEB J. 1997 Apr;11(5):355–364. doi: 10.1096/fasebj.11.5.9141502. [DOI] [PubMed] [Google Scholar]
- Valdenaire O., Rohrbacher E., Langeveld A., Schweizer A., Meijers C. Organization and chromosomal localization of the human ECEL1 (XCE) gene encoding a zinc metallopeptidase involved in the nervous control of respiration. Biochem J. 2000 Mar 15;346(Pt 3):611–616. [PMC free article] [PubMed] [Google Scholar]
- Zoidis E., Zapf J., Schmid C. Phex cDNA cloning from rat bone and studies on phex mRNA expression: tissue-specificity, age-dependency, and regulation by insulin-like growth factor (IGF) I in vivo. Mol Cell Endocrinol. 2000 Oct 25;168(1-2):41–51. doi: 10.1016/s0303-7207(00)00310-5. [DOI] [PubMed] [Google Scholar]