Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jul 1;373(Pt 1):125–132. doi: 10.1042/BJ20030235

Deep-apical tubules: dynamic lipid-raft microdomains in the brush-border region of enterocytes.

Gert H Hansen 1, Jens Pedersen 1, Lise-Lotte Niels-Christiansen 1, Lissi Immerdal 1, E Michael Danielsen 1
PMCID: PMC1223483  PMID: 12689332

Abstract

The brush border of small intestinal enterocytes is highly enriched in cholesterol- and glycosphingolipid-containing membrane microdomains, commonly termed as lipid 'rafts'. Functionally, transcytosis of IgA and exocytosis of newly made brush-border proteins in enterocytes occur through apical lipid raft-containing compartments, but little is otherwise known about these raft microdomains. We therefore studied in closer detail apical lipid-raft compartments in enterocytes by immunogold electron microscopy and biochemical analyses. Novel membrane structures, deep-apical tubules, were visualized by the non-permeable surface marker Ruthenium Red in the brush-border region of the cells. The surface-connected tubules were labelled by antibodies to caveolin-1 and the glycolipid asialo G(M1), and they were sensitive to cholesterol depletion by methyl-beta-cyclodextrin, indicating the presence of raft microdomains. Deep-apical tubules were positioned close to the actin rootlets of adjacent microvilli in the terminal web region, which had a diameter of 50-100 nm, and penetrated up to 1 microm into the cytoplasm. Markers for transcytosis, IgA and the polymeric immunoglobulin receptor, as well as the resident brush-border enzyme aminopeptidase N, were present in these deep-apical tubules. We propose that deep-apical tubules are a specialized lipid-raft microdomain in the brush-border region functioning as a hub in membrane trafficking at the brush border. In addition, the sensitivity to cholesterol depletion suggests that deep-apical tubules function as a cell-surface membrane reservoir for cholesterol and for rapid adaptive changes in the size of microvilli at the brush border.

Full Text

The Full Text of this article is available as a PDF (384.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G. The caveolae membrane system. Annu Rev Biochem. 1998;67:199–225. doi: 10.1146/annurev.biochem.67.1.199. [DOI] [PubMed] [Google Scholar]
  2. Apodaca G. Endocytic traffic in polarized epithelial cells: role of the actin and microtubule cytoskeleton. Traffic. 2001 Mar;2(3):149–159. doi: 10.1034/j.1600-0854.2001.020301.x. [DOI] [PubMed] [Google Scholar]
  3. Badizadegan K., Dickinson B. L., Wheeler H. E., Blumberg R. S., Holmes R. K., Lencer W. I. Heterogeneity of detergent-insoluble membranes from human intestine containing caveolin-1 and ganglioside G(M1). Am J Physiol Gastrointest Liver Physiol. 2000 Jun;278(6):G895–G904. doi: 10.1152/ajpgi.2000.278.6.G895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Booth A. G., Kenny A. J. A rapid method for the preparation of microvilli from rabbit kidney. Biochem J. 1974 Sep;142(3):575–581. doi: 10.1042/bj1420575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown D. A., London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998;14:111–136. doi: 10.1146/annurev.cellbio.14.1.111. [DOI] [PubMed] [Google Scholar]
  6. Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. doi: 10.1016/0092-8674(92)90189-j. [DOI] [PubMed] [Google Scholar]
  7. Chung B. M., Wong J. K., Hardin J. A., Gall D. G. Role of actin in EGF-induced alterations in enterocyte SGLT1 expression. Am J Physiol. 1999 Feb;276(2 Pt 1):G463–G469. doi: 10.1152/ajpgi.1999.276.2.G463. [DOI] [PubMed] [Google Scholar]
  8. Danielsen E. M., Hansen G. H., Niels-Christiansen L. L. Localization and biosynthesis of aminopeptidase N in pig fetal small intestine. Gastroenterology. 1995 Oct;109(4):1039–1050. doi: 10.1016/0016-5085(95)90561-8. [DOI] [PubMed] [Google Scholar]
  9. Danielsen E. M., Hansen G. H., Poulsen M. D. Apical secretion of apolipoproteins from enterocytes. J Cell Biol. 1993 Mar;120(6):1347–1356. doi: 10.1083/jcb.120.6.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Danielsen E. M. Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes. Biochemistry. 1995 Feb 7;34(5):1596–1605. doi: 10.1021/bi00005a016. [DOI] [PubMed] [Google Scholar]
  11. Danielsen E. M., Sjöström H., Norén O., Bro B., Dabelsteen E. Biosynthesis of intestinal microvillar proteins. Characterization of intestinal explants in organ culture and evidence for the existence of pro-forms of the microvillar enzymes. Biochem J. 1982 Mar 15;202(3):647–654. doi: 10.1042/bj2020647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dietzen D. J., Hastings W. R., Lublin D. M. Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J Biol Chem. 1995 Mar 24;270(12):6838–6842. doi: 10.1074/jbc.270.12.6838. [DOI] [PubMed] [Google Scholar]
  13. Field F. J., Born E., Murthy S., Mathur S. N. Caveolin is present in intestinal cells: role in cholesterol trafficking? J Lipid Res. 1998 Oct;39(10):1938–1950. [PubMed] [Google Scholar]
  14. Fujimoto T., Kogo H., Ishiguro K., Tauchi K., Nomura R. Caveolin-2 is targeted to lipid droplets, a new "membrane domain" in the cell. J Cell Biol. 2001 Mar 5;152(5):1079–1085. doi: 10.1083/jcb.152.5.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fujimoto T., Kogo H., Nomura R., Une T. Isoforms of caveolin-1 and caveolar structure. J Cell Sci. 2000 Oct;113(Pt 19):3509–3517. doi: 10.1242/jcs.113.19.3509. [DOI] [PubMed] [Google Scholar]
  16. Gibson A., Futter C. E., Maxwell S., Allchin E. H., Shipman M., Kraehenbuhl J. P., Domingo D., Odorizzi G., Trowbridge I. S., Hopkins C. R. Sorting mechanisms regulating membrane protein traffic in the apical transcytotic pathway of polarized MDCK cells. J Cell Biol. 1998 Oct 5;143(1):81–94. doi: 10.1083/jcb.143.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hansen G. H., Immerdal L., Thorsen E., Niels-Christiansen L. L., Nystrøm B. T., Demant E. J., Danielsen E. M. Lipid rafts exist as stable cholesterol-independent microdomains in the brush border membrane of enterocytes. J Biol Chem. 2001 Jun 1;276(34):32338–32344. doi: 10.1074/jbc.M102667200. [DOI] [PubMed] [Google Scholar]
  18. Hansen G. H., Niels-Christiansen L. L., Immerdal L., Hunziker W., Kenny A. J., Danielsen E. M. Transcytosis of immunoglobulin A in the mouse enterocyte occurs through glycolipid raft- and rab17-containing compartments. Gastroenterology. 1999 Mar;116(3):610–622. doi: 10.1016/s0016-5085(99)70183-6. [DOI] [PubMed] [Google Scholar]
  19. Hansen G. H., Niels-Christiansen L. L., Thorsen E., Immerdal L., Danielsen E. M. Cholesterol depletion of enterocytes. Effect on the Golgi complex and apical membrane trafficking. J Biol Chem. 2000 Feb 18;275(7):5136–5142. doi: 10.1074/jbc.275.7.5136. [DOI] [PubMed] [Google Scholar]
  20. Hansen G. H., Sjöström H., Norén O., Dabelsteen E. Immunomicroscopic localization of aminopeptidase N in the pig enterocyte. Implications for the route of intracellular transport. Eur J Cell Biol. 1987 Apr;43(2):253–259. [PubMed] [Google Scholar]
  21. Hansen G. H., Wetterberg L. L., Sjöström H., Norén O. Immunogold labelling is a quantitative method as demonstrated by studies on aminopeptidase N in microvillar membrane vesicles. Histochem J. 1992 Mar;24(3):132–136. doi: 10.1007/BF01047462. [DOI] [PubMed] [Google Scholar]
  22. Harder T., Gerke V. The annexin II2p11(2) complex is the major protein component of the triton X-100-insoluble low-density fraction prepared from MDCK cells in the presence of Ca2+. Biochim Biophys Acta. 1994 Sep 29;1223(3):375–382. doi: 10.1016/0167-4889(94)90098-1. [DOI] [PubMed] [Google Scholar]
  23. Hooper N. M. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review). Mol Membr Biol. 1999 Apr-Jun;16(2):145–156. doi: 10.1080/096876899294607. [DOI] [PubMed] [Google Scholar]
  24. Keller P., Simons K. Cholesterol is required for surface transport of influenza virus hemagglutinin. J Cell Biol. 1998 Mar 23;140(6):1357–1367. doi: 10.1083/jcb.140.6.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Khurana S., Nath S. K., Levine S. A., Bowser J. M., Tse C. M., Cohen M. E., Donowitz M. Brush border phosphatidylinositol 3-kinase mediates epidermal growth factor stimulation of intestinal NaCl absorption and Na+/H+ exchange. J Biol Chem. 1996 Apr 26;271(17):9919–9927. doi: 10.1074/jbc.271.17.9919. [DOI] [PubMed] [Google Scholar]
  26. Kogo H., Fujimoto T. Caveolin-1 isoforms are encoded by distinct mRNAs. Identification Of mouse caveolin-1 mRNA variants caused by alternative transcription initiation and splicing. FEBS Lett. 2000 Jan 14;465(2-3):119–123. doi: 10.1016/s0014-5793(99)01730-5. [DOI] [PubMed] [Google Scholar]
  27. Kramer W., Glombik H., Petry S., Heuer H., Schäfer H., Wendler W., Corsiero D., Girbig F., Weyland C. Identification of binding proteins for cholesterol absorption inhibitors as components of the intestinal cholesterol transporter. FEBS Lett. 2000 Dec 29;487(2):293–297. doi: 10.1016/s0014-5793(00)02372-3. [DOI] [PubMed] [Google Scholar]
  28. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  29. Maier O., Aït Slimane T., Hoekstra D. Membrane domains and polarized trafficking of sphingolipids. Semin Cell Dev Biol. 2001 Apr;12(2):149–161. doi: 10.1006/scdb.2000.0232. [DOI] [PubMed] [Google Scholar]
  30. Mooseker M. S., Keller T. C., 3rd, Hirokawa N. Regulation of cytoskeletal structure and contractility in the brush border. Ciba Found Symp. 1983;95:195–215. doi: 10.1002/9780470720769.ch12. [DOI] [PubMed] [Google Scholar]
  31. Mostov K. E., Verges M., Altschuler Y. Membrane traffic in polarized epithelial cells. Curr Opin Cell Biol. 2000 Aug;12(4):483–490. doi: 10.1016/s0955-0674(00)00120-4. [DOI] [PubMed] [Google Scholar]
  32. Ostermeyer A. G., Paci J. M., Zeng Y., Lublin D. M., Munro S., Brown D. A. Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J Cell Biol. 2001 Mar 5;152(5):1071–1078. doi: 10.1083/jcb.152.5.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pol A., Luetterforst R., Lindsay M., Heino S., Ikonen E., Parton R. G. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol. 2001 Mar 5;152(5):1057–1070. doi: 10.1083/jcb.152.5.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Riemann D., Hansen G. H., Niels-Christiansen L., Thorsen E., Immerdal L., Santos A. N., Kehlen A., Langner J., Danielsen E. M. Caveolae/lipid rafts in fibroblast-like synoviocytes: ectopeptidase-rich membrane microdomains. Biochem J. 2001 Feb 15;354(Pt 1):47–55. doi: 10.1042/0264-6021:3540047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schlegel A., Lisanti M. P. The caveolin triad: caveolae biogenesis, cholesterol trafficking, and signal transduction. Cytokine Growth Factor Rev. 2001 Mar;12(1):41–51. doi: 10.1016/s1359-6101(00)00022-8. [DOI] [PubMed] [Google Scholar]
  36. Schnitzer J. E., Oh P., Pinney E., Allard J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol. 1994 Dec;127(5):1217–1232. doi: 10.1083/jcb.127.5.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  38. Simons K., Ikonen E. How cells handle cholesterol. Science. 2000 Dec 1;290(5497):1721–1726. doi: 10.1126/science.290.5497.1721. [DOI] [PubMed] [Google Scholar]
  39. Simons Kai, Ehehalt Robert. Cholesterol, lipid rafts, and disease. J Clin Invest. 2002 Sep;110(5):597–603. doi: 10.1172/JCI16390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smart E. J., Graf G. A., McNiven M. A., Sessa W. C., Engelman J. A., Scherer P. E., Okamoto T., Lisanti M. P. Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol. 1999 Nov;19(11):7289–7304. doi: 10.1128/mcb.19.11.7289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Uittenbogaard A., Smart E. J. Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J Biol Chem. 2000 Aug 18;275(33):25595–25599. doi: 10.1074/jbc.M003401200. [DOI] [PubMed] [Google Scholar]
  42. Van IJzendoorn S. C., Maier O., Van Der Wouden J. M., Hoekstra D. The subapical compartment and its role in intracellular trafficking and cell polarity. J Cell Physiol. 2000 Aug;184(2):151–160. doi: 10.1002/1097-4652(200008)184:2<151::AID-JCP2>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  43. van IJzendoorn S. C., Hoekstra D. The subapical compartment: a novel sorting centre? Trends Cell Biol. 1999 Apr;9(4):144–149. doi: 10.1016/s0962-8924(99)01512-3. [DOI] [PubMed] [Google Scholar]
  44. van Meer G. Caveolin, cholesterol, and lipid droplets? J Cell Biol. 2001 Mar 5;152(5):F29–F34. doi: 10.1083/jcb.152.5.f29. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES