Abstract
We previously described paralogous human genes [NUDT10 and NUDT11 [where NUDT is (nucleoside diphosphate attached moiety 'X')-type motif, also known as the 'nudix'-type motif]] encoding type 3 diphosphoinositol polyphosphate phosphohydrolases (DIPP3) [Hidaka, Caffrey, Hua, Zhang, Falck, Nickel, Carrel, Barnes and Shears (2002) J. Biol. Chem. 277, 32730-32738]. Normally, gene duplication is redundant, and lacks biological significance. Is this true for the DIPP3 genes? We address this question by characterizing highly-conserved murine Nudt10 and Nudt11 homologues of the human genes. Thus these genes must have been duplicated prior to the divergence of primates and sciurognath rodents, approx. 115 million years ago, greatly exceeding the 4 million year half-life for inactivation of redundant paralogues; our data therefore indicate that the DIPP3 duplication is unusual in being physiologically significant. One possible functional consequence is gene neofunctionalization, but we exclude that, since Nudt10 and Nudt11 encode identical proteins. Another possibility is gene subfunctionalization, which we studied by conducting the first quantitative expression analysis of these genes. We demonstrated high Nudt10 expression in liver, kidney and testis; Nudt11 expression is primarily restricted to the brain. This differential, but complementary, expression pattern indicates that subfunctionalization is the evolutionary consequence of DIPP3 gene duplication. Our kinetic data argue that diphosphoinositol polyphosphates are more physiologically relevant substrates for DIPP3 than are either diadenosine hexaphosphate or 5-phosphoribosyl 1-pyrophosphate. Thus the significance of the Nudt10/Nudt11 duplication is specific hydrolysis of diphosphoinositol polyphosphates in a tissue-dependent manner.
Full Text
The Full Text of this article is available as a PDF (223.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnes L. D., Robinson A. K., Mumford C. H., Garrison P. N. Assay of diadenosine tetraphosphate hydrolytic enzymes by boronate chromatography. Anal Biochem. 1985 Jan;144(1):296–304. doi: 10.1016/0003-2697(85)90120-4. [DOI] [PubMed] [Google Scholar]
- Bessman M. J., Frick D. N., O'Handley S. F. The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes. J Biol Chem. 1996 Oct 11;271(41):25059–25062. doi: 10.1074/jbc.271.41.25059. [DOI] [PubMed] [Google Scholar]
- Caffrey J. J., Safrany S. T., Yang X., Shears S. B. Discovery of molecular and catalytic diversity among human diphosphoinositol-polyphosphate phosphohydrolases. An expanding Nudt family. J Biol Chem. 2000 Apr 28;275(17):12730–12736. doi: 10.1074/jbc.275.17.12730. [DOI] [PubMed] [Google Scholar]
- Cartwright Jared L., Safrany Stephen T., Dixon Linda K., Darzynkiewicz Edward, Stepinski Janusz, Burke Richard, McLennan Alexander G. The g5R (D250) gene of African swine fever virus encodes a Nudix hydrolase that preferentially degrades diphosphoinositol polyphosphates. J Virol. 2002 Feb;76(3):1415–1421. doi: 10.1128/JVI.76.3.1415-1421.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubois Evelyne, Scherens Bart, Vierendeels Fabienne, Ho Melisa M. W., Messenguy Francine, Shears Stephen B. In Saccharomyces cerevisiae, the inositol polyphosphate kinase activity of Kcs1p is required for resistance to salt stress, cell wall integrity, and vacuolar morphogenesis. J Biol Chem. 2002 Apr 15;277(26):23755–23763. doi: 10.1074/jbc.M202206200. [DOI] [PubMed] [Google Scholar]
- Fisher David I., Safrany Stephen T., Strike Peter, McLennan Alexander G., Cartwright Jared L. Nudix hydrolases that degrade dinucleoside and diphosphoinositol polyphosphates also have 5-phosphoribosyl 1-pyrophosphate (PRPP) pyrophosphatase activity that generates the glycolytic activator ribose 1,5-bisphosphate. J Biol Chem. 2002 Oct 4;277(49):47313–47317. doi: 10.1074/jbc.M209795200. [DOI] [PubMed] [Google Scholar]
- Force A., Lynch M., Pickett F. B., Amores A., Yan Y. L., Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999 Apr;151(4):1531–1545. doi: 10.1093/genetics/151.4.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heng H. H., Tsui L. C. Modes of DAPI banding and simultaneous in situ hybridization. Chromosoma. 1993 May;102(5):325–332. doi: 10.1007/BF00661275. [DOI] [PubMed] [Google Scholar]
- Hidaka Kiyoshi, Caffrey James J., Hua Len, Zhang Tong, Falck J. R., Nickel Gabrielle C., Carrel Laura, Barnes Larry D., Shears Stephen B. An adjacent pair of human NUDT genes on chromosome X are preferentially expressed in testis and encode two new isoforms of diphosphoinositol polyphosphate phosphohydrolase. J Biol Chem. 2002 Jun 24;277(36):32730–32738. doi: 10.1074/jbc.M205476200. [DOI] [PubMed] [Google Scholar]
- Hoenig M., Lee R. J., Ferguson D. C. A microtiter plate assay for inorganic phosphate. J Biochem Biophys Methods. 1989 Aug-Sep;19(2-3):249–251. doi: 10.1016/0165-022x(89)90031-6. [DOI] [PubMed] [Google Scholar]
- Ingram Stephen W., Safrany Stephen T., Barnes Larry D. Disruption and overexpression of the Schizosaccharomyces pombe aps1 gene, and effects on growth rate, morphology and intracellular diadenosine 5',5"'-P1,P5-pentaphosphate and diphosphoinositol polyphosphate concentrations. Biochem J. 2003 Feb 1;369(Pt 3):519–528. doi: 10.1042/BJ20020733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue Ken, Lupski James R. Molecular mechanisms for genomic disorders. Annu Rev Genomics Hum Genet. 2002 Apr 15;3:199–242. doi: 10.1146/annurev.genom.3.032802.120023. [DOI] [PubMed] [Google Scholar]
- Kawaguchi T., Veech R. L., Uyeda K. Regulation of energy metabolism in macrophages during hypoxia. Roles of fructose 2,6-bisphosphate and ribose 1,5-bisphosphate. J Biol Chem. 2001 May 23;276(30):28554–28561. doi: 10.1074/jbc.M101396200. [DOI] [PubMed] [Google Scholar]
- Kumar Sudhir, Subramanian Sankar. Mutation rates in mammalian genomes. Proc Natl Acad Sci U S A. 2002 Jan 15;99(2):803–808. doi: 10.1073/pnas.022629899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leslie Nick R., McLennan Alexander G., Safrany Stephen T. Cloning and characterisation of hAps1 and hAps2, human diadenosine polyphosphate-metabolising Nudix hydrolases. BMC Biochem. 2002 Jul 16;3:20–20. doi: 10.1186/1471-2091-3-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luo Hongbo R., Saiardi Adolfo, Yu Hongbo, Nagata Eiichiro, Ye Keqiang, Snyder Solomon H. Inositol pyrophosphates are required for DNA hyperrecombination in protein kinase c1 mutant yeast. Biochemistry. 2002 Feb 26;41(8):2509–2515. doi: 10.1021/bi0118153. [DOI] [PubMed] [Google Scholar]
- Lynch M., Conery J. S. The evolutionary fate and consequences of duplicate genes. Science. 2000 Nov 10;290(5494):1151–1155. doi: 10.1126/science.290.5494.1151. [DOI] [PubMed] [Google Scholar]
- Mazet Francoise, Shimeld Sebastian M. Gene duplication and divergence in the early evolution of vertebrates. Curr Opin Genet Dev. 2002 Aug;12(4):393–396. doi: 10.1016/s0959-437x(02)00315-5. [DOI] [PubMed] [Google Scholar]
- Morrison B. H., Bauer J. A., Kalvakolanu D. V., Lindner D. J. Inositol hexakisphosphate kinase 2 mediates growth suppressive and apoptotic effects of interferon-beta in ovarian carcinoma cells. J Biol Chem. 2001 May 3;276(27):24965–24970. doi: 10.1074/jbc.M101161200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otto Sarah P., Yong Paul. The evolution of gene duplicates. Adv Genet. 2002;46:451–483. doi: 10.1016/s0065-2660(02)46017-8. [DOI] [PubMed] [Google Scholar]
- Safrany S. T., Caffrey J. J., Yang X., Bembenek M. E., Moyer M. B., Burkhart W. A., Shears S. B. A novel context for the 'MutT' module, a guardian of cell integrity, in a diphosphoinositol polyphosphate phosphohydrolase. EMBO J. 1998 Nov 16;17(22):6599–6607. doi: 10.1093/emboj/17.22.6599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Safrany S. T., Caffrey J. J., Yang X., Shears S. B. Diphosphoinositol polyphosphates: the final frontier for inositide research? Biol Chem. 1999 Jul-Aug;380(7-8):945–951. doi: 10.1515/BC.1999.117. [DOI] [PubMed] [Google Scholar]
- Safrany S. T., Ingram S. W., Cartwright J. L., Falck J. R., McLennan A. G., Barnes L. D., Shears S. B. The diadenosine hexaphosphate hydrolases from Schizosaccharomyces pombe and Saccharomyces cerevisiae are homologues of the human diphosphoinositol polyphosphate phosphohydrolase. Overlapping substrate specificities in a MutT-type protein. J Biol Chem. 1999 Jul 30;274(31):21735–21740. doi: 10.1074/jbc.274.31.21735. [DOI] [PubMed] [Google Scholar]
- Shears S. B. Assessing the omnipotence of inositol hexakisphosphate. Cell Signal. 2001 Mar;13(3):151–158. doi: 10.1016/s0898-6568(01)00129-2. [DOI] [PubMed] [Google Scholar]
- Xu W., Shen J., Dunn C. A., Desai S., Bessman M. J. The Nudix hydrolases of Deinococcus radiodurans. Mol Microbiol. 2001 Jan;39(2):286–290. doi: 10.1046/j.1365-2958.2001.02267.x. [DOI] [PubMed] [Google Scholar]
- Yang X., Safrany S. T., Shears S. B. Site-directed mutagenesis of diphosphoinositol polyphosphate phosphohydrolase, a dual specificity NUDT enzyme that attacks diadenosine polyphosphates and diphosphoinositol polyphosphates. J Biol Chem. 1999 Dec 10;274(50):35434–35440. doi: 10.1074/jbc.274.50.35434. [DOI] [PubMed] [Google Scholar]
- Yang X., Shears S. B. Multitasking in signal transduction by a promiscuous human Ins(3,4,5,6)P(4) 1-kinase/Ins(1,3,4)P(3) 5/6-kinase. Biochem J. 2000 Nov 1;351(Pt 3):551–555. [PMC free article] [PubMed] [Google Scholar]