Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jul 1;373(Pt 1):281–288. doi: 10.1042/BJ20030295

Beta-sheet is the bioactive conformation of the anti-angiogenic anginex peptide.

Ruud P M Dings 1, Monica M Arroyo 1, Nathan A Lockwood 1, Loes I van Eijk 1, Judy R Haseman 1, Arjan W Griffioen 1, Kevin H Mayo 1
PMCID: PMC1223486  PMID: 12708970

Abstract

Anginex is a designed peptide 33mer that functions as a cytokine-like agent to inhibit angiogenesis. Although this short linear peptide has been shown by NMR and CD to form a nascent beta-sheet conformation in solution, the actual bioactive structure formed upon binding to its receptor on the surface of endothelial cells could be quite different. By using a series of double-cysteine disulphide-bridged analogues, we provide evidence in the present study that the beta-sheet is in fact the bioactive conformation of anginex. CD and NMR spectral analysis of the analogues indicate formation of a beta-sheet conformation. Three functional assays, endothelial cell proliferation, apoptosis and in vitro angiogenesis, were performed on all analogues. As long as the placement of disulphide bonds preserved the beta-strand alignment, as in the proposed bioactive conformation, bioactivities were preserved. Knowledge of the bioactive conformation of anginex will aid in the design of smaller molecule mimetics of this potent anti-angiogenic peptide.

Full Text

The Full Text of this article is available as a PDF (214.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler A. J., Greenfield N. J., Fasman G. D. Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol. 1973;27:675–735. doi: 10.1016/s0076-6879(73)27030-1. [DOI] [PubMed] [Google Scholar]
  2. Baeyens K. J., De Bondt H. L., Raeymaekers A., Fiers W., De Ranter C. J. The structure of mouse tumour-necrosis factor at 1.4 A resolution: towards modulation of its selectivity and trimerization. Acta Crystallogr D Biol Crystallogr. 1999 Apr;55(Pt 4):772–778. doi: 10.1107/s0907444998018435. [DOI] [PubMed] [Google Scholar]
  3. Beamer L. J., Carroll S. F., Eisenberg D. Crystal structure of human BPI and two bound phospholipids at 2.4 angstrom resolution. Science. 1997 Jun 20;276(5320):1861–1864. doi: 10.1126/science.276.5320.1861. [DOI] [PubMed] [Google Scholar]
  4. Darzynkiewicz Z., Bruno S., Del Bino G., Gorczyca W., Hotz M. A., Lassota P., Traganos F. Features of apoptotic cells measured by flow cytometry. Cytometry. 1992;13(8):795–808. doi: 10.1002/cyto.990130802. [DOI] [PubMed] [Google Scholar]
  5. Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
  6. Dings Ruud P. M., Yokoyama Yumi, Ramakrishnan Sundaram, Griffioen Arjan W., Mayo Kevin H. The designed angiostatic peptide anginex synergistically improves chemotherapy and antiangiogenesis therapy with angiostatin. Cancer Res. 2003 Jan 15;63(2):382–385. [PubMed] [Google Scholar]
  7. Dings Ruud P. M., van der Schaft Daisy W. J., Hargittai Balazs, Haseman Judy, Griffioen Arjan W., Mayo Kevin H. Anti-tumor activity of the novel angiogenesis inhibitor anginex. Cancer Lett. 2003 May 8;194(1):55–66. doi: 10.1016/s0304-3835(03)00015-6. [DOI] [PubMed] [Google Scholar]
  8. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995 Jan;1(1):27–31. doi: 10.1038/nm0195-27. [DOI] [PubMed] [Google Scholar]
  9. Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
  10. Griffioen A. W., Molema G. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev. 2000 Jun;52(2):237–268. [PubMed] [Google Scholar]
  11. Griffioen A. W., van der Schaft D. W., Barendsz-Janson A. F., Cox A., Struijker Boudier H. A., Hillen H. F., Mayo K. H. Anginex, a designed peptide that inhibits angiogenesis. Biochem J. 2001 Mar 1;354(Pt 2):233–242. doi: 10.1042/0264-6021:3540233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  13. Gupta S. K., Singh J. P. Inhibition of endothelial cell proliferation by platelet factor-4 involves a unique action on S phase progression. J Cell Biol. 1994 Nov;127(4):1121–1127. doi: 10.1083/jcb.127.4.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hanzawa H., Shimada I., Kuzuhara T., Komano H., Kohda D., Inagaki F., Natori S., Arata Y. 1H nuclear magnetic resonance study of the solution conformation of an antibacterial protein, sapecin. FEBS Lett. 1990 Sep 3;269(2):413–420. doi: 10.1016/0014-5793(90)81206-4. [DOI] [PubMed] [Google Scholar]
  15. Hohenester E., Sasaki T., Olsen B. R., Timpl R. Crystal structure of the angiogenesis inhibitor endostatin at 1.5 A resolution. EMBO J. 1998 Mar 16;17(6):1656–1664. doi: 10.1093/emboj/17.6.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ilyina E., Roongta V., Mayo K. H. NMR structure of a de novo designed, peptide 33mer with two distinct, compact beta-sheet folds. Biochemistry. 1997 Apr 29;36(17):5245–5250. doi: 10.1021/bi963064o. [DOI] [PubMed] [Google Scholar]
  17. Johnson W. C., Jr Protein secondary structure and circular dichroism: a practical guide. Proteins. 1990;7(3):205–214. doi: 10.1002/prot.340070302. [DOI] [PubMed] [Google Scholar]
  18. Mayo K. H., Haseman J., Ilyina E., Gray B. Designed beta-sheet-forming peptide 33mers with potent human bactericidal/permeability increasing protein-like bactericidal and endotoxin neutralizing activities. Biochim Biophys Acta. 1998 Sep 16;1425(1):81–92. doi: 10.1016/s0304-4165(98)00053-1. [DOI] [PubMed] [Google Scholar]
  19. Mayo K. H., Haseman J., Young H. C., Mayo J. W. Structure-function relationships in novel peptide dodecamerswith broad-spectrum bactericidal and endotoxin-neutralizing activities. Biochem J. 2000 Aug 1;349(Pt 3):717–728. doi: 10.1042/bj3490717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mayo K. H., Roongta V., Ilyina E., Milius R., Barker S., Quinlan C., La Rosa G., Daly T. J. NMR solution structure of the 32-kDa platelet factor 4 ELR-motif N-terminal chimera: a symmetric tetramer. Biochemistry. 1995 Sep 12;34(36):11399–11409. doi: 10.1021/bi00036a012. [DOI] [PubMed] [Google Scholar]
  21. Mayo K. H., van der Schaft D. W., Griffioen A. W. Designed beta-sheet peptides that inhibit proliferation and induce apoptosis in endothelial cells. Angiogenesis. 2001;4(1):45–51. doi: 10.1023/a:1016672117477. [DOI] [PubMed] [Google Scholar]
  22. O'Reilly M. S., Boehm T., Shing Y., Fukai N., Vasios G., Lane W. S., Flynn E., Birkhead J. R., Olsen B. R., Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997 Jan 24;88(2):277–285. doi: 10.1016/s0092-8674(00)81848-6. [DOI] [PubMed] [Google Scholar]
  23. O'Reilly M. S., Holmgren L., Shing Y., Chen C., Rosenthal R. A., Moses M., Lane W. S., Cao Y., Sage E. H., Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994 Oct 21;79(2):315–328. doi: 10.1016/0092-8674(94)90200-3. [DOI] [PubMed] [Google Scholar]
  24. Rastinejad F., Polverini P. J., Bouck N. P. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell. 1989 Feb 10;56(3):345–355. doi: 10.1016/0092-8674(89)90238-9. [DOI] [PubMed] [Google Scholar]
  25. Relou I. A., Damen C. A., van der Schaft D. W., Groenewegen G., Griffioen A. W. Effect of culture conditions on endothelial cell growth and responsiveness. Tissue Cell. 1998 Oct;30(5):525–530. doi: 10.1016/s0040-8166(98)80032-3. [DOI] [PubMed] [Google Scholar]
  26. Selsted M. E., Harwig S. S. Determination of the disulfide array in the human defensin HNP-2. A covalently cyclized peptide. J Biol Chem. 1989 Mar 5;264(7):4003–4007. [PubMed] [Google Scholar]
  27. Waterhous D. V., Johnson W. C., Jr Importance of environment in determining secondary structure in proteins. Biochemistry. 1994 Mar 1;33(8):2121–2128. doi: 10.1021/bi00174a019. [DOI] [PubMed] [Google Scholar]
  28. Wild R., Ramakrishnan S., Sedgewick J., Griffioen A. W. Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: effects of VEGF-toxin conjugate on tumor microvessel density. Microvasc Res. 2000 May;59(3):368–376. doi: 10.1006/mvre.1999.2233. [DOI] [PubMed] [Google Scholar]
  29. van der Schaft D. W., Toebes E. A., Haseman J. R., Mayo K. H., Griffioen A. W. Bactericidal/permeability-increasing protein (BPI) inhibits angiogenesis via induction of apoptosis in vascular endothelial cells. Blood. 2000 Jul 1;96(1):176–181. [PubMed] [Google Scholar]
  30. van der Schaft Daisy W. J., Dings Ruud P. M., de Lussanet Quido G., van Eijk Loes I., Nap Annemiek W., Beets-Tan Regina G. H., Bouma-Ter Steege Jessica C. A., Wagstaff John, Mayo Kevin H., Griffioen Arjan W. The designer anti-angiogenic peptide anginex targets tumor endothelial cells and inhibits tumor growth in animal models. FASEB J. 2002 Oct 18;16(14):1991–1993. doi: 10.1096/fj.02-0509fje. [DOI] [PubMed] [Google Scholar]
  31. van der Schaft Daisy W. J., Wagstaff John, Mayo Kevin H., Griffioen Arjan W. The antiangiogenic properties of bactericidal/permeability-increasing protein (BPI). Ann Med. 2002;34(1):19–27. doi: 10.1080/078538902317338607. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES