Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jul 1;373(Pt 1):1–18. doi: 10.1042/bj20030405

Amino acid transporters: roles in amino acid sensing and signalling in animal cells.

Russell Hyde 1, Peter M Taylor 1, Harinder S Hundal 1
PMCID: PMC1223487  PMID: 12879880

Abstract

Amino acid availability regulates cellular physiology by modulating gene expression and signal transduction pathways. However, although the signalling intermediates between nutrient availability and altered gene expression have become increasingly well documented, how eukaryotic cells sense the presence of either a nutritionally rich or deprived medium is still uncertain. From recent studies it appears that the intracellular amino acid pool size is particularly important in regulating translational effectors, thus, regulated transport of amino acids across the plasma membrane represents a means by which the cellular response to amino acids could be controlled. Furthermore, evidence from studies with transportable amino acid analogues has demonstrated that flux through amino acid transporters may act as an initiator of nutritional signalling. This evidence, coupled with the substrate selectivity and sensitivity to nutrient availability classically associated with amino acid transporters, plus the recent discovery of transporter-associated signalling proteins, demonstrates a potential role for nutrient transporters as initiators of cellular nutrient signalling. Here, we review the evidence supporting the idea that distinct amino acid "receptors" function to detect and transmit certain nutrient stimuli in higher eukaryotes. In particular, we focus on the role that amino acid transporters may play in the sensing of amino acid levels, both directly as initiators of nutrient signalling and indirectly as regulators of external amino acid access to intracellular receptor/signalling mechanisms.

Full Text

The Full Text of this article is available as a PDF (353.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe K., Saito H. Possible linkage between glutamate transporter and mitogen-activated protein kinase cascade in cultured rat cortical astrocytes. J Neurochem. 2001 Jan;76(1):217–223. doi: 10.1046/j.1471-4159.2001.00062.x. [DOI] [PubMed] [Google Scholar]
  2. Alfieri R. R., Petronini P. G., Bonelli M. A., Caccamo A. E., Cavazzoni A., Borghetti A. F., Wheeler K. P. Osmotic regulation of ATA2 mRNA expression and amino acid transport System A activity. Biochem Biophys Res Commun. 2001 Apr 27;283(1):174–178. doi: 10.1006/bbrc.2001.4729. [DOI] [PubMed] [Google Scholar]
  3. Armstrong J. L., Bonavaud S. M., Toole B. J., Yeaman S. J. Regulation of glycogen synthesis by amino acids in cultured human muscle cells. J Biol Chem. 2001 Jan 12;276(2):952–956. doi: 10.1074/jbc.M004812200. [DOI] [PubMed] [Google Scholar]
  4. Aulak K. S., Mishra R., Zhou L., Hyatt S. L., de Jonge W., Lamers W., Snider M., Hatzoglou M. Post-transcriptional regulation of the arginine transporter Cat-1 by amino acid availability. J Biol Chem. 1999 Oct 22;274(43):30424–30432. doi: 10.1074/jbc.274.43.30424. [DOI] [PubMed] [Google Scholar]
  5. Bai L., Xu H., Collins J. F., Ghishan F. K. Molecular and functional analysis of a novel neuronal vesicular glutamate transporter. J Biol Chem. 2001 Jun 29;276(39):36764–36769. doi: 10.1074/jbc.M104578200. [DOI] [PubMed] [Google Scholar]
  6. Bai Liqun, Zhang Xiaohong, Ghishan Fayez K. Characterization of vesicular glutamate transporter in pancreatic alpha - and beta -cells and its regulation by glucose. Am J Physiol Gastrointest Liver Physiol. 2002 Nov 20;284(5):G808–G814. doi: 10.1152/ajpgi.00333.2002. [DOI] [PubMed] [Google Scholar]
  7. Bain Perry J., LeBlanc-Chaffin Rene, Chen Hong, Palii Stela S., Leach Kelly M., Kilberg Michael S. The mechanism for transcriptional activation of the human ATA2 transporter gene by amino acid deprivation is different than that for asparagine synthetase. J Nutr. 2002 Oct;132(10):3023–3029. doi: 10.1093/jn/131.10.3023. [DOI] [PubMed] [Google Scholar]
  8. Balavoine S., Feldmann G., Lardeux B. Regulation of RNA degradation in cultured rat hepatocytes: effects of specific amino acids and insulin. J Cell Physiol. 1993 Jul;156(1):56–62. doi: 10.1002/jcp.1041560109. [DOI] [PubMed] [Google Scholar]
  9. Balavoine S., Rogier E., Feldmann G., Lardeux B. Responsiveness of RNA degradation to amino acids in cultured rat hepatocytes: comparison with isolated rat hepatocytes. J Cell Physiol. 1992 Jan;150(1):149–157. doi: 10.1002/jcp.1041500120. [DOI] [PubMed] [Google Scholar]
  10. Bandyopadhyay G., Sajan M. P., Kanoh Y., Standaert M. L., Burke T. R., Jr, Quon M. J., Reed B. C., Dikic I., Noel L. E., Newgard C. B. Glucose activates mitogen-activated protein kinase (extracellular signal-regulated kinase) through proline-rich tyrosine kinase-2 and the Glut1 glucose transporter. J Biol Chem. 2000 Dec 29;275(52):40817–40826. doi: 10.1074/jbc.M007920200. [DOI] [PubMed] [Google Scholar]
  11. Bandyopadhyay G., Sajan M. P., Kanoh Y., Standaert M. L., Quon M. J., Reed B. C., Dikic I., Farese R. V. Glucose activates protein kinase C-zeta /lambda through proline-rich tyrosine kinase-2, extracellular signal-regulated kinase, and phospholipase D: a novel mechanism for activating glucose transporter translocation. J Biol Chem. 2001 Jul 19;276(38):35537–35545. doi: 10.1074/jbc.M106042200. [DOI] [PubMed] [Google Scholar]
  12. Baquet A., Hue L., Meijer A. J., van Woerkom G. M., Plomp P. J. Swelling of rat hepatocytes stimulates glycogen synthesis. J Biol Chem. 1990 Jan 15;265(2):955–959. [PubMed] [Google Scholar]
  13. Baquet A., Lavoinne A., Hue L. Comparison of the effects of various amino acids on glycogen synthesis, lipogenesis and ketogenesis in isolated rat hepatocytes. Biochem J. 1991 Jan 1;273(Pt 1):57–62. doi: 10.1042/bj2730057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Baquet A., Maisin L., Hue L. Swelling of rat hepatocytes activates acetyl-CoA carboxylase in parallel to glycogen synthase. Biochem J. 1991 Sep 15;278(Pt 3):887–890. doi: 10.1042/bj2780887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Barbosa-Tessmann I. P., Chen C., Zhong C., Siu F., Schuster S. M., Nick H. S., Kilberg M. S. Activation of the human asparagine synthetase gene by the amino acid response and the endoplasmic reticulum stress response pathways occurs by common genomic elements. J Biol Chem. 2000 Sep 1;275(35):26976–26985. doi: 10.1074/jbc.M000004200. [DOI] [PubMed] [Google Scholar]
  16. Beck F. X., Burger-Kentischer A., Müller E. Cellular response to osmotic stress in the renal medulla. Pflugers Arch. 1998 Nov;436(6):814–827. doi: 10.1007/s004240050710. [DOI] [PubMed] [Google Scholar]
  17. Bellocchio E. E., Reimer R. J., Fremeau R. T., Jr, Edwards R. H. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science. 2000 Aug 11;289(5481):957–960. doi: 10.1126/science.289.5481.957. [DOI] [PubMed] [Google Scholar]
  18. Bennett V., Baines A. J. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev. 2001 Jul;81(3):1353–1392. doi: 10.1152/physrev.2001.81.3.1353. [DOI] [PubMed] [Google Scholar]
  19. Bergamini E., Del Roso A., Gori Z., Masiello P., Masini M., Pollera M. Endocrine and amino acid regulation of liver macroautophagy and proteolytic function. Am J Physiol. 1994 Jan;266(1 Pt 1):G118–G122. doi: 10.1152/ajpgi.1994.266.1.G118. [DOI] [PubMed] [Google Scholar]
  20. Bertrand Gyslaine, Ishiyama Nobuyoshi, Nenquin Myriam, Ravier Magalie A., Henquin Jean-Claude. The elevation of glutamate content and the amplification of insulin secretion in glucose-stimulated pancreatic islets are not causally related. J Biol Chem. 2002 Jun 26;277(36):32883–32891. doi: 10.1074/jbc.M205326200. [DOI] [PubMed] [Google Scholar]
  21. Best L., Miley H. E., Yates A. P. Activation of an anion conductance and beta-cell depolarization during hypotonically induced insulin release. Exp Physiol. 1996 Nov;81(6):927–933. doi: 10.1113/expphysiol.1996.sp003993. [DOI] [PubMed] [Google Scholar]
  22. Besterman J. M., Watkins C. A., Rannels D. E. Regulation of protein synthesis in lung by amino acids and insulin. Am J Physiol. 1983 Nov;245(5 Pt 1):E508–E514. doi: 10.1152/ajpendo.1983.245.5.E508. [DOI] [PubMed] [Google Scholar]
  23. Betz H., Kuhse J., Schmieden V., Laube B., Kirsch J., Harvey R. J. Structure and functions of inhibitory and excitatory glycine receptors. Ann N Y Acad Sci. 1999 Apr 30;868:667–676. doi: 10.1111/j.1749-6632.1999.tb11343.x. [DOI] [PubMed] [Google Scholar]
  24. Bevington A., Brown J., Butler H., Govindji S., M-Khalid K., Sheridan K., Walls J. Impaired system A amino acid transport mimics the catabolic effects of acid in L6 cells. Eur J Clin Invest. 2002 Aug;32(8):590–602. doi: 10.1046/j.1365-2362.2002.01038.x. [DOI] [PubMed] [Google Scholar]
  25. Bevington A., Brown J., Pratt A., Messer J., Walls J. Impaired glycolysis and protein catabolism induced by acid in L6 rat muscle cells. Eur J Clin Invest. 1998 Nov;28(11):908–917. doi: 10.1046/j.1365-2362.1998.00382.x. [DOI] [PubMed] [Google Scholar]
  26. Bevington A., Brown J., Walls J. Leucine suppresses acid-induced protein wasting in L6 rat muscle cells. Eur J Clin Invest. 2001 Jun;31(6):497–503. doi: 10.1046/j.1365-2362.2001.00845.x. [DOI] [PubMed] [Google Scholar]
  27. Billups D., Hanley J. G., Orme M., Attwell D., Moss S. J. GABAC receptor sensitivity is modulated by interaction with MAP1B. J Neurosci. 2000 Dec 1;20(23):8643–8650. doi: 10.1523/JNEUROSCI.20-23-08643.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Blommaart E. F., Luiken J. J., Blommaart P. J., van Woerkom G. M., Meijer A. J. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem. 1995 Feb 3;270(5):2320–2326. doi: 10.1074/jbc.270.5.2320. [DOI] [PubMed] [Google Scholar]
  29. Bode B. P. Recent molecular advances in mammalian glutamine transport. J Nutr. 2001 Sep;131(9 Suppl):2475S–7S. doi: 10.1093/jn/131.9.2475S. [DOI] [PubMed] [Google Scholar]
  30. Boerner P., Saier M. H., Jr Adaptive regulatory control of System A transport activity in a kidney epithelial cell line (MDCK) and in a transformed variant (MDCK-T1). J Cell Physiol. 1985 Feb;122(2):308–315. doi: 10.1002/jcp.1041220221. [DOI] [PubMed] [Google Scholar]
  31. Bolster Douglas R., Crozier Stephen J., Kimball Scot R., Jefferson Leonard S. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem. 2002 May 7;277(27):23977–23980. doi: 10.1074/jbc.C200171200. [DOI] [PubMed] [Google Scholar]
  32. Bracy D. S., Handlogten M. E., Barber E. F., Han H. P., Kilberg M. S. Cis-inhibition, trans-inhibition, and repression of hepatic amino acid transport mediated by System A. Substrate specificity and other properties. J Biol Chem. 1986 Feb 5;261(4):1514–1520. [PubMed] [Google Scholar]
  33. Brice N. L., Varadi A., Ashcroft S. J. H., Molnar E. Metabotropic glutamate and GABA(B) receptors contribute to the modulation of glucose-stimulated insulin secretion in pancreatic beta cells. Diabetologia. 2002 Feb;45(2):242–252. doi: 10.1007/s00125-001-0750-0. [DOI] [PubMed] [Google Scholar]
  34. Bröer Stefan. Adaptation of plasma membrane amino acid transport mechanisms to physiological demands. Pflugers Arch. 2002 Apr 23;444(4):457–466. doi: 10.1007/s00424-002-0840-y. [DOI] [PubMed] [Google Scholar]
  35. Bussolati O., Dall'Asta V., Franchi-Gazzola R., Sala R., Rotoli B. M., Visigalli R., Casado J., Lopez-Fontanals M., Pastor-Anglada M., Gazzola G. C. The role of system A for neutral amino acid transport in the regulation of cell volume. Mol Membr Biol. 2001 Jan-Mar;18(1):27–38. doi: 10.1080/09687680110033756. [DOI] [PubMed] [Google Scholar]
  36. Bussolati O., Uggeri J., Belletti S., Dall'Asta V., Gazzola G. C. The stimulation of Na,K,Cl cotransport and of system A for neutral amino acid transport is a mechanism for cell volume increase during the cell cycle. FASEB J. 1996 Jun;10(8):920–926. doi: 10.1096/fasebj.10.8.8666170. [DOI] [PubMed] [Google Scholar]
  37. Campbell W. A., Sah D. E., Medina M. M., Albina J. E., Coleman W. B., Thompson N. L. TA1/LAT-1/CD98 light chain and system L activity, but not 4F2/CD98 heavy chain, respond to arginine availability in rat hepatic cells. Loss Of response in tumor cells. J Biol Chem. 2000 Feb 25;275(8):5347–5354. doi: 10.1074/jbc.275.8.5347. [DOI] [PubMed] [Google Scholar]
  38. Carneiro Ana M., Ingram Susan L., Beaulieu Jean-Martin, Sweeney Ava, Amara Susan G., Thomas Sheila M., Caron Marc G., Torres Gonzalo E. The multiple LIM domain-containing adaptor protein Hic-5 synaptically colocalizes and interacts with the dopamine transporter. J Neurosci. 2002 Aug 15;22(16):7045–7054. doi: 10.1523/JNEUROSCI.22-16-07045.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Chaudhry F. A., Reimer R. J., Krizaj D., Barber D., Storm-Mathisen J., Copenhagen D. R., Edwards R. H. Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell. 1999 Dec 23;99(7):769–780. doi: 10.1016/s0092-8674(00)81674-8. [DOI] [PubMed] [Google Scholar]
  40. Chaudhry Farrukh A., Reimer Richard J., Edwards Robert H. The glutamine commute: take the N line and transfer to the A. J Cell Biol. 2002 Apr 29;157(3):349–355. doi: 10.1083/jcb.200201070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Chen Jie, Fang Yimin. A novel pathway regulating the mammalian target of rapamycin (mTOR) signaling. Biochem Pharmacol. 2002 Oct 1;64(7):1071–1077. doi: 10.1016/s0006-2952(02)01263-7. [DOI] [PubMed] [Google Scholar]
  42. Christensen H. N. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev. 1990 Jan;70(1):43–77. doi: 10.1152/physrev.1990.70.1.43. [DOI] [PubMed] [Google Scholar]
  43. Christie G. R., Hyde R., Hundal H. S. Regulation of amino acid transporters by amino acid availability. Curr Opin Clin Nutr Metab Care. 2001 Sep;4(5):425–431. doi: 10.1097/00075197-200109000-00014. [DOI] [PubMed] [Google Scholar]
  44. Christie Graham R., Hajduch Eric, Hundal Harinder S., Proud Christopher G., Taylor Peter M. Intracellular sensing of amino acids in Xenopus laevis oocytes stimulates p70 S6 kinase in a target of rapamycin-dependent manner. J Biol Chem. 2002 Jan 11;277(12):9952–9957. doi: 10.1074/jbc.M107694200. [DOI] [PubMed] [Google Scholar]
  45. Colton C. A., Czapiga M., Snell-Callanan J., Chernyshev O. N., Vitek M. P. Apolipoprotein E acts to increase nitric oxide production in macrophages by stimulating arginine transport. Biochim Biophys Acta. 2001 Feb 14;1535(2):134–144. doi: 10.1016/s0925-4439(00)00092-2. [DOI] [PubMed] [Google Scholar]
  46. Conigrave A. D., Franks A. H., Brown E. M., Quinn S. J. L-amino acid sensing by the calcium-sensing receptor: a general mechanism for coupling protein and calcium metabolism? Eur J Clin Nutr. 2002 Nov;56(11):1072–1080. doi: 10.1038/sj.ejcn.1601463. [DOI] [PubMed] [Google Scholar]
  47. Conigrave A. D., Quinn S. J., Brown E. M. L-amino acid sensing by the extracellular Ca2+-sensing receptor. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4814–4819. doi: 10.1073/pnas.97.9.4814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Dall'Asta V., Franchi-Gazzola R., Bussolati O., Sala R., Rotoli B. M., Rossi P. A., Uggeri J., Belletti S., Visigalli R., Gazzola G. C. Modulation of transport systems for neutral and anionic amino acids in mesenchymal cells. Biochem Soc Trans. 1996 Aug;24(3):864–869. doi: 10.1042/bst0240864. [DOI] [PubMed] [Google Scholar]
  49. Dawid I. B., Breen J. J., Toyama R. LIM domains: multiple roles as adapters and functional modifiers in protein interactions. Trends Genet. 1998 Apr;14(4):156–162. doi: 10.1016/s0168-9525(98)01424-3. [DOI] [PubMed] [Google Scholar]
  50. Deken S. L., Beckman M. L., Boos L., Quick M. W. Transport rates of GABA transporters: regulation by the N-terminal domain and syntaxin 1A. Nat Neurosci. 2000 Oct;3(10):998–1003. doi: 10.1038/79939. [DOI] [PubMed] [Google Scholar]
  51. Dennis P. B., Fumagalli S., Thomas G. Target of rapamycin (TOR): balancing the opposing forces of protein synthesis and degradation. Curr Opin Genet Dev. 1999 Feb;9(1):49–54. doi: 10.1016/s0959-437x(99)80007-0. [DOI] [PubMed] [Google Scholar]
  52. Dennis P. B., Jaeschke A., Saitoh M., Fowler B., Kozma S. C., Thomas G. Mammalian TOR: a homeostatic ATP sensor. Science. 2001 Nov 2;294(5544):1102–1105. doi: 10.1126/science.1063518. [DOI] [PubMed] [Google Scholar]
  53. Didion T., Regenberg B., Jørgensen M. U., Kielland-Brandt M. C., Andersen H. A. The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol Microbiol. 1998 Feb;27(3):643–650. doi: 10.1046/j.1365-2958.1998.00714.x. [DOI] [PubMed] [Google Scholar]
  54. Drucker D. J. Minireview: the glucagon-like peptides. Endocrinology. 2001 Feb;142(2):521–527. doi: 10.1210/endo.142.2.7983. [DOI] [PubMed] [Google Scholar]
  55. Duan S., Anderson C. M., Stein B. A., Swanson R. A. Glutamate induces rapid upregulation of astrocyte glutamate transport and cell-surface expression of GLAST. J Neurosci. 1999 Dec 1;19(23):10193–10200. doi: 10.1523/JNEUROSCI.19-23-10193.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Dubbelhuis Peter F., Meijer Alfred J. Hepatic amino acid-dependent signaling is under the control of AMP-dependent protein kinase. FEBS Lett. 2002 Jun 19;521(1-3):39–42. doi: 10.1016/s0014-5793(02)02815-6. [DOI] [PubMed] [Google Scholar]
  57. Dufner A., Thomas G. Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res. 1999 Nov 25;253(1):100–109. doi: 10.1006/excr.1999.4683. [DOI] [PubMed] [Google Scholar]
  58. Duplus E., Glorian M., Forest C. Fatty acid regulation of gene transcription. J Biol Chem. 2000 Oct 6;275(40):30749–30752. doi: 10.1074/jbc.R000015200. [DOI] [PubMed] [Google Scholar]
  59. Edinger Aimee L., Thompson Craig B. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell. 2002 Jul;13(7):2276–2288. doi: 10.1091/mbc.01-12-0584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Englesberg E., Moffett J. A genetic approach to the study of neutral amino acid transport in mammalian cells in culture. J Membr Biol. 1986;91(3):199–212. doi: 10.1007/BF01868814. [DOI] [PubMed] [Google Scholar]
  61. Fafournoux P., Bruhat A., Jousse C. Amino acid regulation of gene expression. Biochem J. 2000 Oct 1;351(Pt 1):1–12. doi: 10.1042/0264-6021:3510001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Fenczik C. A., Sethi T., Ramos J. W., Hughes P. E., Ginsberg M. H. Complementation of dominant suppression implicates CD98 in integrin activation. Nature. 1997 Nov 6;390(6655):81–85. doi: 10.1038/36349. [DOI] [PubMed] [Google Scholar]
  63. Fernandez J., Yaman I., Mishra R., Merrick W. C., Snider M. D., Lamers W. H., Hatzoglou M. Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability. J Biol Chem. 2000 Dec 12;276(15):12285–12291. doi: 10.1074/jbc.M009714200. [DOI] [PubMed] [Google Scholar]
  64. Fernandez James, Yaman Ibrahim, Merrick William C., Koromilas Antonis, Wek Ronald C., Sood Rushira, Hensold Jack, Hatzoglou Maria. Regulation of internal ribosome entry site-mediated translation by eukaryotic initiation factor-2alpha phosphorylation and translation of a small upstream open reading frame. J Biol Chem. 2001 Oct 29;277(3):2050–2058. doi: 10.1074/jbc.M109199200. [DOI] [PubMed] [Google Scholar]
  65. Fernandez James, Yaman Ibrahim, Sarnow Peter, Snider Martin D., Hatzoglou Maria. Regulation of internal ribosomal entry site-mediated translation by phosphorylation of the translation initiation factor eIF2alpha. J Biol Chem. 2002 Mar 4;277(21):19198–19205. doi: 10.1074/jbc.M201052200. [DOI] [PubMed] [Google Scholar]
  66. Flakoll P. J., Wentzel L. S., Rice D. E., Hill J. O., Abumrad N. N. Short-term regulation of insulin-mediated glucose utilization in four-day fasted human volunteers: role of amino acid availability. Diabetologia. 1992 Apr;35(4):357–366. doi: 10.1007/BF00401203. [DOI] [PubMed] [Google Scholar]
  67. Forsberg H., Ljungdahl P. O. Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr Genet. 2001 Sep;40(2):91–109. doi: 10.1007/s002940100244. [DOI] [PubMed] [Google Scholar]
  68. Fox H. L., Pham P. T., Kimball S. R., Jefferson L. S., Lynch C. J. Amino acid effects on translational repressor 4E-BP1 are mediated primarily by L-leucine in isolated adipocytes. Am J Physiol. 1998 Nov;275(5 Pt 1):C1232–C1238. doi: 10.1152/ajpcell.1998.275.5.C1232. [DOI] [PubMed] [Google Scholar]
  69. Franchi-Gazzola R., Visigalli R., Bussolati O., Dall'Asta V., Gazzola G. C. Adaptive increase of amino acid transport system A requires ERK1/2 activation. J Biol Chem. 1999 Oct 8;274(41):28922–28928. doi: 10.1074/jbc.274.41.28922. [DOI] [PubMed] [Google Scholar]
  70. Franchi-Gazzola R., Visigalli R., Dall'Asta V., Sala R., Woo S. K., Kwon H. M., Gazzola G. C., Bussolati O. Amino acid depletion activates TonEBP and sodium-coupled inositol transport. Am J Physiol Cell Physiol. 2001 Jun;280(6):C1465–C1474. doi: 10.1152/ajpcell.2001.280.6.C1465. [DOI] [PubMed] [Google Scholar]
  71. Fremeau R. T., Jr, Troyer M. D., Pahner I., Nygaard G. O., Tran C. H., Reimer R. J., Bellocchio E. E., Fortin D., Storm-Mathisen J., Edwards R. H. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron. 2001 Aug 2;31(2):247–260. doi: 10.1016/s0896-6273(01)00344-0. [DOI] [PubMed] [Google Scholar]
  72. Fremeau Robert T., Jr, Burman Jonathon, Qureshi Tayyaba, Tran Cindy H., Proctor John, Johnson Juliette, Zhang Hui, Sulzer David, Copenhagen David R., Storm-Mathisen Jon. The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci U S A. 2002 Oct 18;99(22):14488–14493. doi: 10.1073/pnas.222546799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Fujita H., Kamiguchi K., Cho D., Shibanuma M., Morimoto C., Tachibana K. Interaction of Hic-5, A senescence-related protein, with focal adhesion kinase. J Biol Chem. 1998 Oct 9;273(41):26516–26521. doi: 10.1074/jbc.273.41.26516. [DOI] [PubMed] [Google Scholar]
  74. Gadea A., López-Colomé A. M. Glial transporters for glutamate, glycine and GABA I. Glutamate transporters. J Neurosci Res. 2001 Mar 15;63(6):453–460. doi: 10.1002/jnr.1039. [DOI] [PubMed] [Google Scholar]
  75. Gaussin V., Hue L., Stalmans W., Bollen M. Activation of hepatic acetyl-CoA carboxylase by glutamate and Mg2+ is mediated by protein phosphatase-2A. Biochem J. 1996 May 15;316(Pt 1):217–224. doi: 10.1042/bj3160217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Gazzola G. C., Dall'Asta V., Guidotti G. G. Adaptive regulation of amino acid transport in cultured human fibroblasts. Sites and mechanism of action. J Biol Chem. 1981 Apr 10;256(7):3191–3198. [PubMed] [Google Scholar]
  77. Gazzola R. F., Sala R., Bussolati O., Visigalli R., Dall'Asta V., Ganapathy V., Gazzola G. C. The adaptive regulation of amino acid transport system A is associated to changes in ATA2 expression. FEBS Lett. 2001 Feb 9;490(1-2):11–14. doi: 10.1016/s0014-5793(01)02126-3. [DOI] [PubMed] [Google Scholar]
  78. Gerich J. E., Charles M. A., Grodsky G. M. Characterization of the effects of arginine and glucose on glucagon and insulin release from the perfused rat pancreas. J Clin Invest. 1974 Oct;54(4):833–841. doi: 10.1172/JCI107823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Gingras A. C., Raught B., Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001 Apr 1;15(7):807–826. doi: 10.1101/gad.887201. [DOI] [PubMed] [Google Scholar]
  80. Gottesdiener K. M., Karpinski B. A., Lindsten T., Strominger J. L., Jones N. H., Thompson C. B., Leiden J. M. Isolation and structural characterization of the human 4F2 heavy-chain gene, an inducible gene involved in T-lymphocyte activation. Mol Cell Biol. 1988 Sep;8(9):3809–3819. doi: 10.1128/mcb.8.9.3809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Goyal R. K., Lin P., Kanungo J., Payne A. S., Muslin A. J., Longmore G. D. Ajuba, a novel LIM protein, interacts with Grb2, augments mitogen-activated protein kinase activity in fibroblasts, and promotes meiotic maturation of Xenopus oocytes in a Grb2- and Ras-dependent manner. Mol Cell Biol. 1999 Jun;19(6):4379–4389. doi: 10.1128/mcb.19.6.4379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Gras Christelle, Herzog Etienne, Bellenchi Gian Carlo, Bernard Veronique, Ravassard Philippe, Pohl Michel, Gasnier Bruno, Giros Bruno, El Mestikawy Salah. A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci. 2002 Jul 1;22(13):5442–5451. doi: 10.1523/JNEUROSCI.22-13-05442.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Grinde B., Seglen P. O. Effects of amino acid analogues on protein degradation in isolated rat hepatocytes. Biochim Biophys Acta. 1981 Aug 5;676(1):43–50. doi: 10.1016/0304-4165(81)90007-6. [DOI] [PubMed] [Google Scholar]
  84. Gómez-Angelats M., López-Fontanals M., Felipe A., Casado F. J., Pastor-Anglada M. Cytoskeletal-dependent activation of system A for neutral amino acid transport in osmotically stressed mammalian cells: a role for system A in the intracellular accumulation of osmolytes. J Cell Physiol. 1997 Dec;173(3):343–350. doi: 10.1002/(SICI)1097-4652(199712)173:3<343::AID-JCP6>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  85. Hallbrucker C., vom Dahl S., Lang F., Häussinger D. Control of hepatic proteolysis by amino acids. The role of cell volume. Eur J Biochem. 1991 May 8;197(3):717–724. doi: 10.1111/j.1432-1033.1991.tb15963.x. [DOI] [PubMed] [Google Scholar]
  86. Hand Collette K., Rouleau Guy A. Familial amyotrophic lateral sclerosis. Muscle Nerve. 2002 Feb;25(2):135–159. doi: 10.1002/mus.10001. [DOI] [PubMed] [Google Scholar]
  87. Handlogten M. E., Dudenhausen E. E., Yang W., Kilberg M. S. Association of hepatic system A amino acid transporter with the membrane-cytoskeletal proteins ankyrin and fodrin. Biochim Biophys Acta. 1996 Jun 13;1282(1):107–114. doi: 10.1016/0005-2736(96)00046-6. [DOI] [PubMed] [Google Scholar]
  88. Hanley J. G., Jones E. M., Moss S. J. GABA receptor rho1 subunit interacts with a novel splice variant of the glycine transporter, GLYT-1. J Biol Chem. 2000 Jan 14;275(2):840–846. doi: 10.1074/jbc.275.2.840. [DOI] [PubMed] [Google Scholar]
  89. Hanley J. G., Koulen P., Bedford F., Gordon-Weeks P. R., Moss S. J. The protein MAP-1B links GABA(C) receptors to the cytoskeleton at retinal synapses. Nature. 1999 Jan 7;397(6714):66–69. doi: 10.1038/16258. [DOI] [PubMed] [Google Scholar]
  90. Hara K., Kudoh H., Enomoto T., Hashimoto Y., Masuko T. Malignant transformation of NIH3T3 cells by overexpression of early lymphocyte activation antigen CD98. Biochem Biophys Res Commun. 1999 Sep 7;262(3):720–725. doi: 10.1006/bbrc.1999.1051. [DOI] [PubMed] [Google Scholar]
  91. Hayashi M., Otsuka M., Morimoto R., Hirota S., Yatsushiro S., Takeda J., Yamamoto A., Moriyama Y. Differentiation-associated Na+-dependent inorganic phosphate cotransporter (DNPI) is a vesicular glutamate transporter in endocrine glutamatergic systems. J Biol Chem. 2001 Sep 10;276(46):43400–43406. doi: 10.1074/jbc.M106244200. [DOI] [PubMed] [Google Scholar]
  92. Hayashi Mitsuko, Yamada Hiroshi, Uehara Shunsuke, Morimoto Riyo, Muroyama Akiko, Yatsushiro Shouki, Takeda Jun, Yamamoto Akitsugu, Moriyama Yoshinori. Secretory granule-mediated co-secretion of L-glutamate and glucagon triggers glutamatergic signal transmission in islets of Langerhans. J Biol Chem. 2002 Oct 31;278(3):1966–1974. doi: 10.1074/jbc.M206758200. [DOI] [PubMed] [Google Scholar]
  93. Herzog E., Bellenchi G. C., Gras C., Bernard V., Ravassard P., Bedet C., Gasnier B., Giros B., El Mestikawy S. The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci. 2001 Nov 15;21(22):RC181–RC181. doi: 10.1523/JNEUROSCI.21-22-j0001.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Holecek Milan. Relation between glutamine, branched-chain amino acids, and protein metabolism. Nutrition. 2002 Feb;18(2):130–133. doi: 10.1016/s0899-9007(01)00767-5. [DOI] [PubMed] [Google Scholar]
  95. Hundal H. S., Rennie M. J., Watt P. W. Characteristics of L-glutamine transport in perfused rat skeletal muscle. J Physiol. 1987 Dec;393:283–305. doi: 10.1113/jphysiol.1987.sp016824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Hundal H. S. Role of membrane transport in the regulation of skeletal muscle glutamine turnover. Clin Nutr. 1991;10 (Suppl):33–42. doi: 10.1016/0261-5614(91)90112-p. [DOI] [PubMed] [Google Scholar]
  97. Hyatt S. L., Aulak K. S., Malandro M., Kilberg M. S., Hatzoglou M. Adaptive regulation of the cationic amino acid transporter-1 (Cat-1) in Fao cells. J Biol Chem. 1997 Aug 8;272(32):19951–19957. doi: 10.1074/jbc.272.32.19951. [DOI] [PubMed] [Google Scholar]
  98. Hyde R., Christie G. R., Litherland G. J., Hajduch E., Taylor P. M., Hundal H. S. Subcellular localization and adaptive up-regulation of the System A (SAT2) amino acid transporter in skeletal-muscle cells and adipocytes. Biochem J. 2001 May 1;355(Pt 3):563–568. doi: 10.1042/bj3550563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Häussinger D., Graf D., Weiergräber O. H. Glutamine and cell signaling in liver. J Nutr. 2001 Sep;131(9 Suppl):2509S–4S. doi: 10.1093/jn/131.9.2509S. [DOI] [PubMed] [Google Scholar]
  100. Häussinger D., Lang F., Bauers K., Gerok W. Interactions between glutamine metabolism and cell-volume regulation in perfused rat liver. Eur J Biochem. 1990 Mar 30;188(3):689–695. doi: 10.1111/j.1432-1033.1990.tb15451.x. [DOI] [PubMed] [Google Scholar]
  101. Häussinger D. The role of cellular hydration in the regulation of cell function. Biochem J. 1996 Feb 1;313(Pt 3):697–710. doi: 10.1042/bj3130697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Høy Marianne, Maechler Pierre, Efanov Alexander M., Wollheim Claes B., Berggren Per Olof, Gromada Jesper. Increase in cellular glutamate levels stimulates exocytosis in pancreatic beta-cells. FEBS Lett. 2002 Nov 6;531(2):199–203. doi: 10.1016/s0014-5793(02)03500-7. [DOI] [PubMed] [Google Scholar]
  103. Iiboshi Y., Papst P. J., Kawasome H., Hosoi H., Abraham R. T., Houghton P. J., Terada N. Amino acid-dependent control of p70(s6k). Involvement of tRNA aminoacylation in the regulation. J Biol Chem. 1999 Jan 8;274(2):1092–1099. doi: 10.1074/jbc.274.2.1092. [DOI] [PubMed] [Google Scholar]
  104. Jackson M., Song W., Liu M. Y., Jin L., Dykes-Hoberg M., Lin C. I., Bowers W. J., Federoff H. J., Sternweis P. C., Rothstein J. D. Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature. 2001 Mar 1;410(6824):89–93. doi: 10.1038/35065091. [DOI] [PubMed] [Google Scholar]
  105. Kadowaki M., Nagasawa T., Hirata T., Noguchi T., Naito H. Effects of insulin, amino acids and fasting on myofibrillar protein degradation in perfused hindquarters of rats. J Nutr Sci Vitaminol (Tokyo) 1985 Aug;31(4):431–440. doi: 10.3177/jnsv.31.431. [DOI] [PubMed] [Google Scholar]
  106. Kanai Y., Endou H. Heterodimeric amino acid transporters: molecular biology and pathological and pharmacological relevance. Curr Drug Metab. 2001 Dec;2(4):339–354. doi: 10.2174/1389200013338324. [DOI] [PubMed] [Google Scholar]
  107. Kanungo J., Pratt S. J., Marie H., Longmore G. D. Ajuba, a cytosolic LIM protein, shuttles into the nucleus and affects embryonal cell proliferation and fate decisions. Mol Biol Cell. 2000 Oct;11(10):3299–3313. doi: 10.1091/mbc.11.10.3299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Kemp B. E., Stapleton D., Campbell D. J., Chen Z-P, Murthy S., Walter M., Gupta A., Adams J. J., Katsis F., van Denderen B. AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans. 2003 Feb;31(Pt 1):162–168. doi: 10.1042/bst0310162. [DOI] [PubMed] [Google Scholar]
  109. Kilberg M. S., Hutson R. G., Laine R. O. Amino acid-regulated gene expression in eukaryotic cells. FASEB J. 1994 Jan;8(1):13–19. doi: 10.1096/fasebj.8.1.8299885. [DOI] [PubMed] [Google Scholar]
  110. Kimball S. R., Jefferson L. S. Allosteric regulation of eukaryotic initiation factor eIF-2B by adenine nucleotides. Biochem Biophys Res Commun. 1995 Jul 26;212(3):1074–1081. doi: 10.1006/bbrc.1995.2079. [DOI] [PubMed] [Google Scholar]
  111. Kimball Scot R., Jefferson Leonard S. Control of protein synthesis by amino acid availability. Curr Opin Clin Nutr Metab Care. 2002 Jan;5(1):63–67. doi: 10.1097/00075197-200201000-00012. [DOI] [PubMed] [Google Scholar]
  112. Kimura Naoki, Tokunaga Chiharu, Dalal Sushila, Richardson Christine, Yoshino Ken-ichi, Hara Kenta, Kemp Bruce E., Witters Lee A., Mimura Osamu, Yonezawa Kazuyoshi. A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells. 2003 Jan;8(1):65–79. doi: 10.1046/j.1365-2443.2003.00615.x. [DOI] [PubMed] [Google Scholar]
  113. Kowluru A., Chen H. Q., Modrick L. M., Stefanelli C. Activation of acetyl-CoA carboxylase by a glutamate- and magnesium-sensitive protein phosphatase in the islet beta-cell. Diabetes. 2001 Jul;50(7):1580–1587. doi: 10.2337/diabetes.50.7.1580. [DOI] [PubMed] [Google Scholar]
  114. Krause Ulrike, Bertrand Luc, Hue Louis. Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes. Eur J Biochem. 2002 Aug;269(15):3751–3759. doi: 10.1046/j.1432-1033.2002.03074.x. [DOI] [PubMed] [Google Scholar]
  115. Krause Ulrike, Bertrand Luc, Maisin Liliane, Rosa Maria, Hue Louis. Signalling pathways and combinatory effects of insulin and amino acids in isolated rat hepatocytes. Eur J Biochem. 2002 Aug;269(15):3742–3750. doi: 10.1046/j.1432-1033.2002.03069.x. [DOI] [PubMed] [Google Scholar]
  116. Krebs Michael, Krssak Martin, Bernroider Elisabeth, Anderwald Christian, Brehm Attila, Meyerspeer Martin, Nowotny Peter, Roth Erich, Waldhäusl Werner, Roden Michael. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes. 2002 Mar;51(3):599–605. doi: 10.2337/diabetes.51.3.599. [DOI] [PubMed] [Google Scholar]
  117. Lin C. I., Orlov I., Ruggiero A. M., Dykes-Hoberg M., Lee A., Jackson M., Rothstein J. D. Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18. Nature. 2001 Mar 1;410(6824):84–88. doi: 10.1038/35065084. [DOI] [PubMed] [Google Scholar]
  118. Lin C. L., Bristol L. A., Jin L., Dykes-Hoberg M., Crawford T., Clawson L., Rothstein J. D. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron. 1998 Mar;20(3):589–602. doi: 10.1016/s0896-6273(00)80997-6. [DOI] [PubMed] [Google Scholar]
  119. Ling R., Bridges C. C., Sugawara M., Fujita T., Leibach F. H., Prasad P. D., Ganapathy V. Involvement of transporter recruitment as well as gene expression in the substrate-induced adaptive regulation of amino acid transport system A. Biochim Biophys Acta. 2001 May 2;1512(1):15–21. doi: 10.1016/s0005-2736(01)00310-8. [DOI] [PubMed] [Google Scholar]
  120. Low S. Y., Rennie M. J., Taylor P. M. Involvement of integrins and the cytoskeleton in modulation of skeletal muscle glycogen synthesis by changes in cell volume. FEBS Lett. 1997 Nov 3;417(1):101–103. doi: 10.1016/s0014-5793(97)01264-7. [DOI] [PubMed] [Google Scholar]
  121. Low S. Y., Rennie M. J., Taylor P. M. Modulation of glycogen synthesis in rat skeletal muscle by changes in cell volume. J Physiol. 1996 Sep 1;495(Pt 2):299–303. doi: 10.1113/jphysiol.1996.sp021594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Low S. Y., Rennie M. J., Taylor P. M. Signaling elements involved in amino acid transport responses to altered muscle cell volume. FASEB J. 1997 Nov;11(13):1111–1117. doi: 10.1096/fasebj.11.13.9367345. [DOI] [PubMed] [Google Scholar]
  123. Low S. Y., Taylor P. M., Rennie M. J. Responses of glutamine transport in cultured rat skeletal muscle to osmotically induced changes in cell volume. J Physiol. 1996 May 1;492(Pt 3):877–885. doi: 10.1113/jphysiol.1996.sp021353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Lund P. E., Berts A., Hellman B. Stimulation of insulin release by isosmolar addition of permeant molecules. Mol Cell Biochem. 1992 Jan 15;109(1):77–81. doi: 10.1007/BF00230876. [DOI] [PubMed] [Google Scholar]
  125. Lynch C. J., Fox H. L., Vary T. C., Jefferson L. S., Kimball S. R. Regulation of amino acid-sensitive TOR signaling by leucine analogues in adipocytes. J Cell Biochem. 2000 Mar;77(2):234–251. doi: 10.1002/(sici)1097-4644(20000501)77:2<234::aid-jcb7>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  126. Lynch C. J. Role of leucine in the regulation of mTOR by amino acids: revelations from structure-activity studies. J Nutr. 2001 Mar;131(3):861S–865S. doi: 10.1093/jn/131.3.861S. [DOI] [PubMed] [Google Scholar]
  127. MacDonald M. J., Fahien L. A. Glutamate is not a messenger in insulin secretion. J Biol Chem. 2000 Nov 3;275(44):34025–34027. doi: 10.1074/jbc.C000411200. [DOI] [PubMed] [Google Scholar]
  128. MacLeod R. J., Hamilton J. R. Volume regulation initiated by Na(+)-nutrient cotransport in isolated mammalian villus enterocytes. Am J Physiol. 1991 Jan;260(1 Pt 1):G26–G33. doi: 10.1152/ajpgi.1991.260.1.G26. [DOI] [PubMed] [Google Scholar]
  129. Maechler P., Wollheim C. B. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature. 1999 Dec 9;402(6762):685–689. doi: 10.1038/45280. [DOI] [PubMed] [Google Scholar]
  130. Marie H., Attwell D. C-terminal interactions modulate the affinity of GLAST glutamate transporters in salamander retinal glial cells. J Physiol. 1999 Oct 15;520(Pt 2):393–397. doi: 10.1111/j.1469-7793.1999.00393.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Marie Hélène, Billups Daniela, Bedford Fiona K., Dumoulin Andrea, Goyal Rakesh K., Longmore Gregory D., Moss Stephen J., Attwell David. The amino terminus of the glial glutamate transporter GLT-1 interacts with the LIM protein Ajuba. Mol Cell Neurosci. 2002 Feb;19(2):152–164. doi: 10.1006/mcne.2001.1066. [DOI] [PubMed] [Google Scholar]
  132. Matsuya M., Sasaki H., Aoto H., Mitaka T., Nagura K., Ohba T., Ishino M., Takahashi S., Suzuki R., Sasaki T. Cell adhesion kinase beta forms a complex with a new member, Hic-5, of proteins localized at focal adhesions. J Biol Chem. 1998 Jan 9;273(2):1003–1014. doi: 10.1074/jbc.273.2.1003. [DOI] [PubMed] [Google Scholar]
  133. Matthews James C., Anderson Kevin J. Recent advances in amino acid transporters and excitatory amino acid receptors. Curr Opin Clin Nutr Metab Care. 2002 Jan;5(1):77–84. doi: 10.1097/00075197-200201000-00014. [DOI] [PubMed] [Google Scholar]
  134. Maycox P. R., Deckwerth T., Hell J. W., Jahn R. Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes. J Biol Chem. 1988 Oct 25;263(30):15423–15428. [PubMed] [Google Scholar]
  135. Mayordomo Isabel, Estruch Francisco, Sanz Pascual. Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress Response Element)-regulated genes. J Biol Chem. 2002 Jul 1;277(38):35650–35656. doi: 10.1074/jbc.M204198200. [DOI] [PubMed] [Google Scholar]
  136. McClenaghan N. H., Barnett C. R., O'Harte F. P., Flatt P. R. Mechanisms of amino acid-induced insulin secretion from the glucose-responsive BRIN-BD11 pancreatic B-cell line. J Endocrinol. 1996 Dec;151(3):349–357. doi: 10.1677/joe.0.1510349. [DOI] [PubMed] [Google Scholar]
  137. McCormick J. I., Johnstone R. M. Identification of the integrin alpha 3 beta 1 as a component of a partially purified A-system amino acid transporter from Ehrlich cell plasma membranes. Biochem J. 1995 Nov 1;311(Pt 3):743–751. doi: 10.1042/bj3110743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. McDaniel Michael L., Marshall Connie A., Pappan Kirk L., Kwon Guim. Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic beta-cells. Diabetes. 2002 Oct;51(10):2877–2885. doi: 10.2337/diabetes.51.10.2877. [DOI] [PubMed] [Google Scholar]
  139. McDonald K. K., Zharikov S., Block E. R., Kilberg M. S. A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric-oxide synthase may explain the "arginine paradox". J Biol Chem. 1997 Dec 12;272(50):31213–31216. doi: 10.1074/jbc.272.50.31213. [DOI] [PubMed] [Google Scholar]
  140. McGivan J. D., Nicholson B. Regulation of high-affinity glutamate transport by amino acid deprivation and hyperosmotic stress. Am J Physiol. 1999 Oct;277(4 Pt 2):F498–F500. doi: 10.1152/ajprenal.1999.277.4.F498. [DOI] [PubMed] [Google Scholar]
  141. McGivan J. D., Pastor-Anglada M. Regulatory and molecular aspects of mammalian amino acid transport. Biochem J. 1994 Apr 15;299(Pt 2):321–334. doi: 10.1042/bj2990321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. McManus Edward J., Alessi Dario R. TSC1-TSC2: a complex tale of PKB-mediated S6K regulation. Nat Cell Biol. 2002 Sep;4(9):E214–E216. doi: 10.1038/ncb0902-e214. [DOI] [PubMed] [Google Scholar]
  143. Meier Christian, Ristic Zorica, Klauser Stefan, Verrey François. Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J. 2002 Feb 15;21(4):580–589. doi: 10.1093/emboj/21.4.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Miotto G., Venerando R., Khurana K. K., Siliprandi N., Mortimore G. E. Control of hepatic proteolysis by leucine and isovaleryl-L-carnitine through a common locus. Evidence for a possible mechanism of recognition at the plasma membrane. J Biol Chem. 1992 Nov 5;267(31):22066–22072. [PubMed] [Google Scholar]
  145. Miotto G., Venerando R., Marin O., Siliprandi N., Mortimore G. E. Inhibition of macroautophagy and proteolysis in the isolated rat hepatocyte by a nontransportable derivative of the multiple antigen peptide Leu8-Lys4-Lys2-Lys-beta Ala. J Biol Chem. 1994 Oct 14;269(41):25348–25353. [PubMed] [Google Scholar]
  146. Missero C., Pirro M. T., Simeone S., Pischetola M., Di Lauro R. The DNA glycosylase T:G mismatch-specific thymine DNA glycosylase represses thyroid transcription factor-1-activated transcription. J Biol Chem. 2001 Jul 3;276(36):33569–33575. doi: 10.1074/jbc.M104963200. [DOI] [PubMed] [Google Scholar]
  147. Mordier S., Deval C., Béchet D., Tassa A., Ferrara M. Leucine limitation induces autophagy and activation of lysosome-dependent proteolysis in C2C12 myotubes through a mammalian target of rapamycin-independent signaling pathway. J Biol Chem. 2000 Sep 22;275(38):29900–29906. doi: 10.1074/jbc.M003633200. [DOI] [PubMed] [Google Scholar]
  148. Mortimore G. E., Pösö A. R., Kadowaki M., Wert J. J., Jr Multiphasic control of hepatic protein degradation by regulatory amino acids. General features and hormonal modulation. J Biol Chem. 1987 Dec 5;262(34):16322–16327. [PubMed] [Google Scholar]
  149. Munir M., Correale D. M., Robinson M. B. Substrate-induced up-regulation of Na(+)-dependent glutamate transport activity. Neurochem Int. 2000 Aug-Sep;37(2-3):147–162. doi: 10.1016/s0197-0186(00)00018-8. [DOI] [PubMed] [Google Scholar]
  150. Nelson Greg, Chandrashekar Jayaram, Hoon Mark A., Feng Luxin, Zhao Grace, Ryba Nicholas J. P., Zuker Charles S. An amino-acid taste receptor. Nature. 2002 Feb 24;416(6877):199–202. doi: 10.1038/nature726. [DOI] [PubMed] [Google Scholar]
  151. Nicholson B., McGivan J. D. Induction of high affinity glutamate transport activity by amino acid deprivation in renal epithelial cells does not involve an increase in the amount of transporter protein. J Biol Chem. 1996 May 24;271(21):12159–12164. doi: 10.1074/jbc.271.21.12159. [DOI] [PubMed] [Google Scholar]
  152. Nikolova M., Guenova M., Taskov H., Dimitrova E., Staneva M. Levels of expression of CAF7 (CD98) have prognostic significance in adult acute leukemia. Leuk Res. 1998 Jan;22(1):39–47. doi: 10.1016/s0145-2126(97)00129-x. [DOI] [PubMed] [Google Scholar]
  153. Nishitani Shinobu, Matsumura Tsuyoshi, Fujitani Shoji, Sonaka Ichiro, Miura Yutaka, Yagasaki Kazumi. Leucine promotes glucose uptake in skeletal muscles of rats. Biochem Biophys Res Commun. 2002 Dec 20;299(5):693–696. doi: 10.1016/s0006-291x(02)02717-1. [DOI] [PubMed] [Google Scholar]
  154. Osborne T. F. Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action. J Biol Chem. 2000 Oct 20;275(42):32379–32382. doi: 10.1074/jbc.R000017200. [DOI] [PubMed] [Google Scholar]
  155. Palacín M., Estévez R., Bertran J., Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev. 1998 Oct;78(4):969–1054. doi: 10.1152/physrev.1998.78.4.969. [DOI] [PubMed] [Google Scholar]
  156. Patti M. E., Brambilla E., Luzi L., Landaker E. J., Kahn C. R. Bidirectional modulation of insulin action by amino acids. J Clin Invest. 1998 Apr 1;101(7):1519–1529. doi: 10.1172/JCI1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Patti M. E. Nutrient modulation of cellular insulin action. Ann N Y Acad Sci. 1999 Nov 18;892:187–203. doi: 10.1111/j.1749-6632.1999.tb07796.x. [DOI] [PubMed] [Google Scholar]
  158. Pisters P. W., Restifo N. P., Cersosimo E., Brennan M. F. The effects of euglycemic hyperinsulinemia and amino acid infusion on regional and whole body glucose disposal in man. Metabolism. 1991 Jan;40(1):59–65. doi: 10.1016/0026-0495(91)90193-z. [DOI] [PubMed] [Google Scholar]
  159. Pollard Matthew, Meredith David, McGivan John D. Identification of a plasma membrane glutamine transporter from the rat hepatoma cell line H4-IIE-C3. Biochem J. 2002 Nov 15;368(Pt 1):371–375. doi: 10.1042/BJ20020982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Prentki M., Tornheim K., Corkey B. E. Signal transduction mechanisms in nutrient-induced insulin secretion. Diabetologia. 1997 Jul;40 (Suppl 2):S32–S41. doi: 10.1007/s001250051395. [DOI] [PubMed] [Google Scholar]
  161. Proud Christopher G. Regulation of mammalian translation factors by nutrients. Eur J Biochem. 2002 Nov;269(22):5338–5349. doi: 10.1046/j.1432-1033.2002.03292.x. [DOI] [PubMed] [Google Scholar]
  162. Quick Michael W. Substrates regulate gamma-aminobutyric acid transporters in a syntaxin 1A-dependent manner. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5686–5691. doi: 10.1073/pnas.082712899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Rabinovitz M. The phosphofructokinase-uncharged tRNA interaction in metabolic and cell cycle control: an interpretive review. Nucleic Acids Symp Ser. 1995;(33):182–189. [PubMed] [Google Scholar]
  164. Rabinovitz M. The pleiotypic response to amino acid deprivation is the result of interactions between components of the glycolysis and protein synthesis pathways. FEBS Lett. 1992 May 11;302(2):113–116. doi: 10.1016/0014-5793(92)80418-g. [DOI] [PubMed] [Google Scholar]
  165. Reimer R. J., Chaudhry F. A., Gray A. T., Edwards R. H. Amino acid transport system A resembles system N in sequence but differs in mechanism. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7715–7720. doi: 10.1073/pnas.140152797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Rennie M. J., Hundal H. S., Babij P., MacLennan P., Taylor P. M., Watt P. W., Jepson M. M., Millward D. J. Characteristics of a glutamine carrier in skeletal muscle have important consequences for nitrogen loss in injury, infection, and chronic disease. Lancet. 1986 Nov 1;2(8514):1008–1012. doi: 10.1016/s0140-6736(86)92617-6. [DOI] [PubMed] [Google Scholar]
  167. Ritchie J. W., Collingwood C. J., Taylor P. M. Effect of hypothyroidism on pathways for iodothyronine and tryptophan uptake into rat adipocytes. Am J Physiol Endocrinol Metab. 2001 Feb;280(2):E254–E259. doi: 10.1152/ajpendo.2001.280.2.E254. [DOI] [PubMed] [Google Scholar]
  168. Rivas T., Urcelay E., González-Manchón C., Parrilla R., Ayuso M. S. Role of amino acid-induced changes in ion fluxes in the regulation of hepatic protein synthesis. J Cell Physiol. 1995 May;163(2):277–284. doi: 10.1002/jcp.1041630208. [DOI] [PubMed] [Google Scholar]
  169. Robinson Michael B. Regulated trafficking of neurotransmitter transporters: common notes but different melodies. J Neurochem. 2002 Jan;80(1):1–11. doi: 10.1046/j.0022-3042.2001.00698.x. [DOI] [PubMed] [Google Scholar]
  170. Rothstein J. D. Excitotoxicity and neurodegeneration in amyotrophic lateral sclerosis. Clin Neurosci. 1995;3(6):348–359. [PubMed] [Google Scholar]
  171. Rubi B., Ishihara H., Hegardt F. G., Wollheim C. B., Maechler P. GAD65-mediated glutamate decarboxylation reduces glucose-stimulated insulin secretion in pancreatic beta cells. J Biol Chem. 2001 Jul 25;276(39):36391–36396. doi: 10.1074/jbc.M104999200. [DOI] [PubMed] [Google Scholar]
  172. Ryan Renae M., Vandenberg Robert J. Distinct conformational states mediate the transport and anion channel properties of the glutamate transporter EAAT-1. J Biol Chem. 2002 Jan 28;277(16):13494–13500. doi: 10.1074/jbc.M109970200. [DOI] [PubMed] [Google Scholar]
  173. Schäfer Martin K-H, Varoqui Hélène, Defamie Norah, Weihe Eberhard, Erickson Jeffrey D. Molecular cloning and functional identification of mouse vesicular glutamate transporter 3 and its expression in subsets of novel excitatory neurons. J Biol Chem. 2002 Oct 15;277(52):50734–50748. doi: 10.1074/jbc.M206738200. [DOI] [PubMed] [Google Scholar]
  174. Sener A., Best L. C., Yates A. P., Kadiata M. M., Olivares E., Louchami K., Jijakli H., Ladrière L., Malaisse W. J. Stimulus-secretion coupling of arginine-induced insulin release: comparison between the cationic amino acid and its methyl ester. Endocrine. 2000 Dec;13(3):329–340. doi: 10.1385/ENDO:13:3:329. [DOI] [PubMed] [Google Scholar]
  175. Shah O. J., Anthony J. C., Kimball S. R., Jefferson L. S. 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle. Am J Physiol Endocrinol Metab. 2000 Oct;279(4):E715–E729. doi: 10.1152/ajpendo.2000.279.4.E715. [DOI] [PubMed] [Google Scholar]
  176. Simmons W. W., Closs E. I., Cunningham J. M., Smith T. W., Kelly R. A. Cytokines and insulin induce cationic amino acid transporter (CAT) expression in cardiac myocytes. Regulation of L-arginine transport and no production by CAT-1, CAT-2A, and CAT-2B. J Biol Chem. 1996 May 17;271(20):11694–11702. doi: 10.1074/jbc.271.20.11694. [DOI] [PubMed] [Google Scholar]
  177. Singh L. P., Wahba A. J. Allosteric activation of rabbit reticulocyte guanine nucleotide exchange factor activity by sugar phosphates and inositol phosphates. Biochem Biophys Res Commun. 1995 Dec 14;217(2):616–623. doi: 10.1006/bbrc.1995.2819. [DOI] [PubMed] [Google Scholar]
  178. Singh R. K., Rinehart C. A., Kim J. P., Tolleson-Rinehart S., Lawing L. F., Kaufman D. G., Siegal G. P. Tumor cell invasion of basement membrane in vitro is regulated by amino acids. Cancer Invest. 1996;14(1):6–18. doi: 10.3109/07357909609018433. [DOI] [PubMed] [Google Scholar]
  179. Smith P. A., Sakura H., Coles B., Gummerson N., Proks P., Ashcroft F. M. Electrogenic arginine transport mediates stimulus-secretion coupling in mouse pancreatic beta-cells. J Physiol. 1997 Mar 15;499(Pt 3):625–635. doi: 10.1113/jphysiol.1997.sp021955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Soler C., Felipe A., Casado F. J., McGivan J. D., Pastor-Anglada M. Hyperosmolarity leads to an increase in derepressed system A activity in the renal epithelial cell line NBL-1. Biochem J. 1993 Feb 1;289(Pt 3):653–658. doi: 10.1042/bj2890653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Sugawara M., Nakanishi T., Fei Y. J., Huang W., Ganapathy M. E., Leibach F. H., Ganapathy V. Cloning of an amino acid transporter with functional characteristics and tissue expression pattern identical to that of system A. J Biol Chem. 2000 Jun 2;275(22):16473–16477. doi: 10.1074/jbc.C000205200. [DOI] [PubMed] [Google Scholar]
  182. Tadros L. B., Willhoft N. M., Taylor P. M., Rennie M. J. Effects of glutamine deprivation on glutamine transport and synthesis in primary culture of rat skeletal muscle. Am J Physiol. 1993 Dec;265(6 Pt 1):E935–E942. doi: 10.1152/ajpendo.1993.265.6.E935. [DOI] [PubMed] [Google Scholar]
  183. Takamori S., Rhee J. S., Rosenmund C., Jahn R. Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature. 2000 Sep 14;407(6801):189–194. doi: 10.1038/35025070. [DOI] [PubMed] [Google Scholar]
  184. Takamori S., Rhee J. S., Rosenmund C., Jahn R. Identification of differentiation-associated brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2). J Neurosci. 2001 Nov 15;21(22):RC182–RC182. doi: 10.1523/JNEUROSCI.21-22-j0002.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Takamori Shigeo, Malherbe Pari, Broger Clemens, Jahn Reinhard. Molecular cloning and functional characterization of human vesicular glutamate transporter 3. EMBO Rep. 2002 Jul 15;3(8):798–803. doi: 10.1093/embo-reports/kvf159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Takano A., Usui I., Haruta T., Kawahara J., Uno T., Iwata M., Kobayashi M. Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin. Mol Cell Biol. 2001 Aug;21(15):5050–5062. doi: 10.1128/MCB.21.15.5050-5062.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Terruzzi Ileana, Allibardi Sonia, Bendinelli Paola, Maroni Paola, Piccoletti Roberta, Vesco Flavio, Samaja Michele, Luzi Livio. Amino acid- and lipid-induced insulin resistance in rat heart: molecular mechanisms. Mol Cell Endocrinol. 2002 Apr 25;190(1-2):135–145. doi: 10.1016/s0303-7207(02)00005-9. [DOI] [PubMed] [Google Scholar]
  188. Thams P., Capito K. L-arginine stimulation of glucose-induced insulin secretion through membrane depolarization and independent of nitric oxide. Eur J Endocrinol. 1999 Jan;140(1):87–93. doi: 10.1530/eje.0.1400087. [DOI] [PubMed] [Google Scholar]
  189. Theil E. C., Eisenstein R. S. Combinatorial mRNA regulation: iron regulatory proteins and iso-iron-responsive elements (Iso-IREs). J Biol Chem. 2000 Dec 29;275(52):40659–40662. doi: 10.1074/jbc.R000019200. [DOI] [PubMed] [Google Scholar]
  190. Thomas S. M., Hagel M., Turner C. E. Characterization of a focal adhesion protein, Hic-5, that shares extensive homology with paxillin. J Cell Sci. 1999 Jan;112(Pt 2):181–190. doi: 10.1242/jcs.112.2.181. [DOI] [PubMed] [Google Scholar]
  191. Tischler M. E., Ost A. H., Spina B., Cook P. H., Coffman J. Regulation of protein turnover by glucose, insulin, and amino acids in adipose tissue. Am J Physiol. 1984 Sep;247(3 Pt 1):C228–C233. doi: 10.1152/ajpcell.1984.247.3.C228. [DOI] [PubMed] [Google Scholar]
  192. Tremblay F., Marette A. Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem. 2001 Aug 9;276(41):38052–38060. doi: 10.1074/jbc.M106703200. [DOI] [PubMed] [Google Scholar]
  193. Ungermann C., Wickner W., Xu Z. Vacuole acidification is required for trans-SNARE pairing, LMA1 release, and homotypic fusion. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11194–11199. doi: 10.1073/pnas.96.20.11194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Varoqui Helene, Schäfer Martin K. H., Zhu Heming, Weihe Eberhard, Erickson Jeffrey D. Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci. 2002 Jan 1;22(1):142–155. doi: 10.1523/JNEUROSCI.22-01-00142.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Vaulont S., Vasseur-Cognet M., Kahn A. Glucose regulation of gene transcription. J Biol Chem. 2000 Oct 13;275(41):31555–31558. doi: 10.1074/jbc.R000016200. [DOI] [PubMed] [Google Scholar]
  196. Verrey F., Jack D. L., Paulsen I. T., Saier M. H., Jr, Pfeiffer R. New glycoprotein-associated amino acid transporters. J Membr Biol. 1999 Dec 1;172(3):181–192. doi: 10.1007/s002329900595. [DOI] [PubMed] [Google Scholar]
  197. Vom Dahl S., Häussinger D. Nutritional state and the swelling-induced inhibition of proteolysis in perfused rat liver. J Nutr. 1996 Feb;126(2):395–402. doi: 10.1093/jn/126.2.395. [DOI] [PubMed] [Google Scholar]
  198. Watzke N., Grewer C. The anion conductance of the glutamate transporter EAAC1 depends on the direction of glutamate transport. FEBS Lett. 2001 Aug 17;503(2-3):121–125. doi: 10.1016/s0014-5793(01)02715-6. [DOI] [PubMed] [Google Scholar]
  199. Weaver C. D., Yao T. L., Powers A. C., Verdoorn T. A. Differential expression of glutamate receptor subtypes in rat pancreatic islets. J Biol Chem. 1996 May 31;271(22):12977–12984. doi: 10.1074/jbc.271.22.12977. [DOI] [PubMed] [Google Scholar]
  200. Weinhaus A. J., Poronnik P., Tuch B. E., Cook D. I. Mechanisms of arginine-induced increase in cytosolic calcium concentration in the beta-cell line NIT-1. Diabetologia. 1997 Apr;40(4):374–382. doi: 10.1007/s001250050690. [DOI] [PubMed] [Google Scholar]
  201. Wettstein M., vom Dahl S., Lang F., Gerok W., Häussinger D. Cell volume regulatory responses of isolated perfused rat liver. The effect of amino acids. Biol Chem Hoppe Seyler. 1990 Jun;371(6):493–501. doi: 10.1515/bchm3.1990.371.1.493. [DOI] [PubMed] [Google Scholar]
  202. Whitworth T. L., Quick M. W. Substrate-induced regulation of gamma-aminobutyric acid transporter trafficking requires tyrosine phosphorylation. J Biol Chem. 2001 Sep 12;276(46):42932–42937. doi: 10.1074/jbc.M107638200. [DOI] [PubMed] [Google Scholar]
  203. Wipf Daniel, Ludewig Uwe, Tegeder Mechthild, Rentsch Doris, Koch Wolfgang, Frommer Wolf B. Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem Sci. 2002 Mar;27(3):139–147. doi: 10.1016/s0968-0004(01)02054-0. [DOI] [PubMed] [Google Scholar]
  204. Wollheim Claes B., Maechler Pierre. Beta-cell mitochondria and insulin secretion: messenger role of nucleotides and metabolites. Diabetes. 2002 Feb;51 (Suppl 1):S37–S42. doi: 10.2337/diabetes.51.2007.s37. [DOI] [PubMed] [Google Scholar]
  205. Woodlock T. J., Chen X., Young D. A., Bethlendy G., Lichtman M. A., Segel G. B. Association of HSP60-like proteins with the L-system amino acid transporter. Arch Biochem Biophys. 1997 Feb 1;338(1):50–56. doi: 10.1006/abbi.1996.9798. [DOI] [PubMed] [Google Scholar]
  206. Xu G., Kwon G., Cruz W. S., Marshall C. A., McDaniel M. L. Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells. Diabetes. 2001 Feb;50(2):353–360. doi: 10.2337/diabetes.50.2.353. [DOI] [PubMed] [Google Scholar]
  207. Yagita H., Masuko T., Hashimoto Y. Inhibition of tumor cell growth in vitro by murine monoclonal antibodies that recognize a proliferation-associated cell surface antigen system in rats and humans. Cancer Res. 1986 Mar;46(3):1478–1484. [PubMed] [Google Scholar]
  208. Yamada S., Komatsu M., Sato Y., Yamauchi K., Aizawa T., Hashizume K. Glutamate is not a major conveyer of ATP-sensitive K+ channel-independent glucose action in pancreatic islet beta cell. Endocr J. 2001 Jun;48(3):391–395. doi: 10.1507/endocrj.48.391. [DOI] [PubMed] [Google Scholar]
  209. Yaman Ibrahim, Fernandez James, Sarkar Bedabrata, Schneider Robert J., Snider Martin D., Nagy Laura E., Hatzoglou Maria. Nutritional control of mRNA stability is mediated by a conserved AU-rich element that binds the cytoplasmic shuttling protein HuR. J Biol Chem. 2002 Aug 23;277(44):41539–41546. doi: 10.1074/jbc.M204850200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Yao D., Mackenzie B., Ming H., Varoqui H., Zhu H., Hediger M. A., Erickson J. D. A novel system A isoform mediating Na+/neutral amino acid cotransport. J Biol Chem. 2000 Jul 28;275(30):22790–22797. doi: 10.1074/jbc.M002965200. [DOI] [PubMed] [Google Scholar]
  211. Zerangue N., Kavanaugh M. P. Flux coupling in a neuronal glutamate transporter. Nature. 1996 Oct 17;383(6601):634–637. doi: 10.1038/383634a0. [DOI] [PubMed] [Google Scholar]
  212. Zhang Peichuan, McGrath Barbara C., Reinert Jamie, Olsen DeAnne S., Lei Li, Gill Sangeeta, Wek Sheree A., Vattem Krishna M., Wek Ronald C., Kimball Scot R. The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol Cell Biol. 2002 Oct;22(19):6681–6688. doi: 10.1128/MCB.22.19.6681-6688.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Zharikov S. I., Block E. R. Association of L-arginine transporters with fodrin: implications for hypoxic inhibition of arginine uptake. Am J Physiol Lung Cell Mol Physiol. 2000 Jan;278(1):L111–L117. doi: 10.1152/ajplung.2000.278.1.L111. [DOI] [PubMed] [Google Scholar]
  214. Zharikov S. I., Sigova A. A., Chen S., Bubb M. R., Block E. R. Cytoskeletal regulation of the L-arginine/NO pathway in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2001 Mar;280(3):L465–L473. doi: 10.1152/ajplung.2001.280.3.L465. [DOI] [PubMed] [Google Scholar]
  215. van Sluijters D. A., Dubbelhuis P. F., Blommaart E. F., Meijer A. J. Amino-acid-dependent signal transduction. Biochem J. 2000 Nov 1;351(Pt 3):545–550. doi: 10.1042/0264-6021:3510545. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES