Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jul 15;373(Pt 2):437–449. doi: 10.1042/BJ20021721

Structural and functional characterization of recombinant mouse annexin A11: influence of calcium binding.

Emilio Lecona 1, Javier Turnay 1, Nieves Olmo 1, Ana Guzmán-Aránguez 1, Reginald O Morgan 1, Maria-Pilar Fernandez 1, Ma Antonia Lizarbe 1
PMCID: PMC1223495  PMID: 12689336

Abstract

Annexin A11 is one of the 12 vertebrate subfamilies in the annexin superfamily of calcium/phospholipid-binding proteins, distinguishable by long, non-homologous N-termini rich in proline, glycine and tyrosine residues. As there is negligible structural information concerning this annexin subfamily apart from primary sequence data, we have cloned, expressed and purified recombinant mouse annexin A11 to investigate its structural and functional properties. CD spectroscopy reveals two main secondary-structure contributions, alpha-helix and random coil (approx. 30% each), corresponding mainly to the annexin C-terminal tetrad and the N-terminus respectively. On calcium binding, an increase in alpha-helix and a decrease in random coil are detected. Fluorescence spectroscopy reveals that its only tryptophan residue, located at the N-terminus, is completely exposed to the solvent; calcium binding promotes a change in tertiary structure, which does not affect this tryptophan residue but involves the movement of approximately four tyrosine residues to a more hydrophobic environment. These calcium-induced structural changes produce a significant thermal stabilization, with an increase of approx. 14 degrees C in the melting temperature. Annexin A11 binds to acidic phospholipids and to phosphatidylethanolamine in the presence of calcium; weaker calcium-independent binding to phosphatidylserine, phosphatidic acid and phosphatidylethanolamine was also observed. The calcium-dependent binding to phosphatidylserine is accompanied by an increase in alpha-helix and a decrease in random-coil contents, with translocation of the tryptophan residue towards a more hydrophobic environment. This protein induces vesicle aggregation but requires non-physiological calcium concentrations in vitro. A three-dimensional model, consistent with these data, was generated to conceptualize annexin A11 structure-function relationships.

Full Text

The Full Text of this article is available as a PDF (415.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arboledas D., Olmo N., Lizarbe M. A., Turnay J. Role of the N-terminus in the structure and stability of chicken annexin V. FEBS Lett. 1997 Oct 20;416(2):217–220. doi: 10.1016/s0014-5793(97)01207-6. [DOI] [PubMed] [Google Scholar]
  2. Bances P., Fernandez M. R., Rodriguez-Garcia M. I., Morgan R. O., Fernandez M. P. Annexin A11 (ANXA11) gene structure as the progenitor of paralogous annexins and source of orthologous cDNA isoforms. Genomics. 2000 Oct 1;69(1):95–103. doi: 10.1006/geno.2000.6309. [DOI] [PubMed] [Google Scholar]
  3. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bewley M. C., Boustead C. M., Walker J. H., Waller D. A., Huber R. Structure of chicken annexin V at 2.25-A resolution. Biochemistry. 1993 Apr 20;32(15):3923–3929. doi: 10.1021/bi00066a011. [DOI] [PubMed] [Google Scholar]
  5. Brownawell A. M., Creutz C. E. Calcium-dependent binding of sorcin to the N-terminal domain of synexin (annexin VII). J Biol Chem. 1997 Aug 29;272(35):22182–22190. doi: 10.1074/jbc.272.35.22182. [DOI] [PubMed] [Google Scholar]
  6. Burger A., Berendes R., Liemann S., Benz J., Hofmann A., Göttig P., Huber R., Gerke V., Thiel C., Römisch J. The crystal structure and ion channel activity of human annexin II, a peripheral membrane protein. J Mol Biol. 1996 Apr 12;257(4):839–847. doi: 10.1006/jmbi.1996.0205. [DOI] [PubMed] [Google Scholar]
  7. Fernandez M. P., Jenkins N. A., Gilbert D. J., Copeland N. G., Morgan R. O. Sequence and chromosomal localization of mouse annexin XI. Genomics. 1996 Nov 1;37(3):366–374. doi: 10.1006/geno.1996.0571. [DOI] [PubMed] [Google Scholar]
  8. Fiedler K., Lafont F., Parton R. G., Simons K. Annexin XIIIb: a novel epithelial specific annexin is implicated in vesicular traffic to the apical plasma membrane. J Cell Biol. 1995 Mar;128(6):1043–1053. doi: 10.1083/jcb.128.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Furge L. L., Chen K., Cohen S. Annexin VII and annexin XI are tyrosine phosphorylated in peroxovanadate-treated dogs and in platelet-derived growth factor-treated rat vascular smooth muscle cells. J Biol Chem. 1999 Nov 19;274(47):33504–33509. doi: 10.1074/jbc.274.47.33504. [DOI] [PubMed] [Google Scholar]
  10. Gerke Volker, Moss Stephen E. Annexins: from structure to function. Physiol Rev. 2002 Apr;82(2):331–371. doi: 10.1152/physrev.00030.2001. [DOI] [PubMed] [Google Scholar]
  11. Gu X. Statistical methods for testing functional divergence after gene duplication. Mol Biol Evol. 1999 Dec;16(12):1664–1674. doi: 10.1093/oxfordjournals.molbev.a026080. [DOI] [PubMed] [Google Scholar]
  12. Guex N., Diemand A., Peitsch M. C. Protein modelling for all. Trends Biochem Sci. 1999 Sep;24(9):364–367. doi: 10.1016/s0968-0004(99)01427-9. [DOI] [PubMed] [Google Scholar]
  13. Huber R., Römisch J., Paques E. P. The crystal and molecular structure of human annexin V, an anticoagulant protein that binds to calcium and membranes. EMBO J. 1990 Dec;9(12):3867–3874. doi: 10.1002/j.1460-2075.1990.tb07605.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Iglesias Juan-Manuel, Morgan Reginald O., Jenkins Nancy A., Copeland Neal G., Gilbert Debra J., Fernandez Maria-Pilar. Comparative genetics and evolution of annexin A13 as the founder gene of vertebrate annexins. Mol Biol Evol. 2002 May;19(5):608–618. doi: 10.1093/oxfordjournals.molbev.a004120. [DOI] [PubMed] [Google Scholar]
  15. Iino S., Sudo T., Niwa T., Fukasawa T., Hidaka H., Niki I. Annexin XI may be involved in Ca2+ - or GTP-gammaS-induced insulin secretion in the pancreatic beta-cell. FEBS Lett. 2000 Aug 11;479(1-2):46–50. doi: 10.1016/s0014-5793(00)01877-9. [DOI] [PubMed] [Google Scholar]
  16. Jost M., Zeuschner D., Seemann J., Weber K., Gerke V. Identification and characterization of a novel type of annexin-membrane interaction: Ca2+ is not required for the association of annexin II with early endosomes. J Cell Sci. 1997 Jan;110(Pt 2):221–228. doi: 10.1242/jcs.110.2.221. [DOI] [PubMed] [Google Scholar]
  17. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  18. König J., Gerke V. Modes of annexin-membrane interactions analyzed by employing chimeric annexin proteins. Biochim Biophys Acta. 2000 Dec 20;1498(2-3):174–180. doi: 10.1016/s0167-4889(00)00094-x. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lambert O., Gerke V., Bader M. F., Porte F., Brisson A. Structural analysis of junctions formed between lipid membranes and several annexins by cryo-electron microscopy. J Mol Biol. 1997 Sep 12;272(1):42–55. doi: 10.1006/jmbi.1997.1183. [DOI] [PubMed] [Google Scholar]
  21. Liemann S., Huber R. Three-dimensional structure of annexins. Cell Mol Life Sci. 1997 Jun;53(6):516–521. doi: 10.1007/s000180050065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Luecke H., Chang B. T., Mailliard W. S., Schlaepfer D. D., Haigler H. T. Crystal structure of the annexin XII hexamer and implications for bilayer insertion. Nature. 1995 Nov 30;378(6556):512–515. doi: 10.1038/378512a0. [DOI] [PubMed] [Google Scholar]
  23. Matsushima N., Creutz C. E., Kretsinger R. H. Polyproline, beta-turn helices. Novel secondary structures proposed for the tandem repeats within rhodopsin, synaptophysin, synexin, gliadin, RNA polymerase II, hordein, and gluten. Proteins. 1990;7(2):125–155. doi: 10.1002/prot.340070204. [DOI] [PubMed] [Google Scholar]
  24. Misaki Y., Pruijn G. J., van der Kemp A. W., van Venrooij W. J. The 56K autoantigen is identical to human annexin XI. J Biol Chem. 1994 Feb 11;269(6):4240–4246. [PubMed] [Google Scholar]
  25. Mizutani A., Usuda N., Tokumitsu H., Minami H., Yasui K., Kobayashi R., Hidaka H. CAP-50, a newly identified annexin, localizes in nuclei of cultured fibroblast 3Y1 cells. J Biol Chem. 1992 Jul 5;267(19):13498–13504. [PubMed] [Google Scholar]
  26. Mizutani A., Watanabe N., Kitao T., Tokumitsu H., Hidaka H. The long amino-terminal tail domain of annexin XI is necessary for its nuclear localization. Arch Biochem Biophys. 1995 Apr 1;318(1):157–165. doi: 10.1006/abbi.1995.1216. [DOI] [PubMed] [Google Scholar]
  27. Morgan R. O., Bell D. W., Testa J. R., Fernandez M. P. Genomic locations of ANX11 and ANX13 and the evolutionary genetics of human annexins. Genomics. 1998 Feb 15;48(1):100–110. doi: 10.1006/geno.1997.5148. [DOI] [PubMed] [Google Scholar]
  28. Morgan R. O., Fernandez M. P. Expression profile and structural divergence of novel human annexin 31. FEBS Lett. 1998 Sep 4;434(3):300–304. doi: 10.1016/s0014-5793(98)00997-1. [DOI] [PubMed] [Google Scholar]
  29. Morgan R. O., Fernández M. P. Molecular phylogeny of annexins and identification of a primitive homologue in Giardia lamblia. Mol Biol Evol. 1995 Nov;12(6):967–979. doi: 10.1093/oxfordjournals.molbev.a040290. [DOI] [PubMed] [Google Scholar]
  30. Morgan R. O., Jenkins N. A., Gilbert D. J., Copeland N. G., Balsara B. R., Testa J. R., Fernandez M. P. Novel human and mouse annexin A10 are linked to the genome duplications during early chordate evolution. Genomics. 1999 Aug 15;60(1):40–49. doi: 10.1006/geno.1999.5895. [DOI] [PubMed] [Google Scholar]
  31. Mäler Lena, Sastry Mallika, Chazin Walter J. A structural basis for S100 protein specificity derived from comparative analysis of apo and Ca(2+)-calcyclin. J Mol Biol. 2002 Mar 22;317(2):279–290. doi: 10.1006/jmbi.2002.5421. [DOI] [PubMed] [Google Scholar]
  32. Perczel A., Park K., Fasman G. D. Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: a practical guide. Anal Biochem. 1992 May 15;203(1):83–93. doi: 10.1016/0003-2697(92)90046-a. [DOI] [PubMed] [Google Scholar]
  33. Raynal P., Pollard H. B. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994 Apr 5;1197(1):63–93. doi: 10.1016/0304-4157(94)90019-1. [DOI] [PubMed] [Google Scholar]
  34. Rosengarth A., Gerke V., Luecke H. X-ray structure of full-length annexin 1 and implications for membrane aggregation. J Mol Biol. 2001 Feb 23;306(3):489–498. doi: 10.1006/jmbi.2000.4423. [DOI] [PubMed] [Google Scholar]
  35. Rosengarth A., Rösgen J., Hinz H. J., Gerke V. A comparison of the energetics of annexin I and annexin V. J Mol Biol. 1999 May 21;288(5):1013–1025. doi: 10.1006/jmbi.1999.2732. [DOI] [PubMed] [Google Scholar]
  36. Rosengarth Anja, Luecke Hartmut. A calcium-driven conformational switch of the N-terminal and core domains of annexin A1. J Mol Biol. 2003 Mar 7;326(5):1317–1325. doi: 10.1016/s0022-2836(03)00027-5. [DOI] [PubMed] [Google Scholar]
  37. Réty S., Osterloh D., Arié J. P., Tabaries S., Seeman J., Russo-Marie F., Gerke V., Lewit-Bentley A. Structural basis of the Ca(2+)-dependent association between S100C (S100A11) and its target, the N-terminal part of annexin I. Structure. 2000 Feb 15;8(2):175–184. doi: 10.1016/s0969-2126(00)00093-9. [DOI] [PubMed] [Google Scholar]
  38. Réty S., Sopkova J., Renouard M., Osterloh D., Gerke V., Tabaries S., Russo-Marie F., Lewit-Bentley A. The crystal structure of a complex of p11 with the annexin II N-terminal peptide. Nat Struct Biol. 1999 Jan;6(1):89–95. doi: 10.1038/4965. [DOI] [PubMed] [Google Scholar]
  39. Sable C. L., Riches D. W. Cloning and functional activity of a novel truncated form of annexin IV in mouse macrophages. Biochem Biophys Res Commun. 1999 Apr 29;258(1):162–167. doi: 10.1006/bbrc.1999.0544. [DOI] [PubMed] [Google Scholar]
  40. Satoh Hirokazu, Shibata Hideki, Nakano Yoshimi, Kitaura Yasuyuki, Maki Masatoshi. ALG-2 interacts with the amino-terminal domain of annexin XI in a Ca(2+)-dependent manner. Biochem Biophys Res Commun. 2002 Mar 15;291(5):1166–1172. doi: 10.1006/bbrc.2002.6600. [DOI] [PubMed] [Google Scholar]
  41. Sopkova J., Vincent M., Takahashi M., Lewit-Bentley A., Gallay J. Conformational flexibility of domain III of annexin V at membrane/water interfaces. Biochemistry. 1999 Apr 27;38(17):5447–5458. doi: 10.1021/bi982760g. [DOI] [PubMed] [Google Scholar]
  42. Sudo T., Hidaka H. Characterization of the calcyclin (S100A6) binding site of annexin XI-A by site-directed mutagenesis. FEBS Lett. 1999 Feb 5;444(1):11–14. doi: 10.1016/s0014-5793(99)00014-9. [DOI] [PubMed] [Google Scholar]
  43. Swairjo M. A., Seaton B. A. Annexin structure and membrane interactions: a molecular perspective. Annu Rev Biophys Biomol Struct. 1994;23:193–213. doi: 10.1146/annurev.bb.23.060194.001205. [DOI] [PubMed] [Google Scholar]
  44. Tokumitsu H., Mizutani A., Hidaka H. Calcyclin-binding site located on the NH2-terminal domain of rabbit CAP-50 (annexin XI): functional expression of CAP-50 in Escherichia coli. Arch Biochem Biophys. 1993 Jun;303(2):302–306. doi: 10.1006/abbi.1993.1287. [DOI] [PubMed] [Google Scholar]
  45. Tokumitsu H., Mizutani A., Minami H., Kobayashi R., Hidaka H. A calcyclin-associated protein is a newly identified member of the Ca2+/phospholipid-binding proteins, annexin family. J Biol Chem. 1992 May 5;267(13):8919–8924. [PubMed] [Google Scholar]
  46. Towle C. A., Treadwell B. V. Identification of a novel mammalian annexin. cDNA cloning, sequence analysis, and ubiquitous expression of the annexin XI gene. J Biol Chem. 1992 Mar 15;267(8):5416–5423. [PubMed] [Google Scholar]
  47. Towle C. A., Weissbach L., Treadwell B. V. Alternatively spliced annexin XI transcripts encode proteins that differ near the amino-terminus. Biochim Biophys Acta. 1992 Jun 15;1131(2):223–226. doi: 10.1016/0167-4781(92)90084-d. [DOI] [PubMed] [Google Scholar]
  48. Turnay J., Olmo N., Lizarbe M. A., von der Mark K. Changes in the expression of annexin A5 gene during in vitro chondrocyte differentiation: influence of cell attachment. J Cell Biochem. 2001;84(1):132–142. doi: 10.1002/jcb.1272. [DOI] [PubMed] [Google Scholar]
  49. Turnay J., Pfannmüller E., Lizarbe M. A., Bertling W. M., von der Mark K. Collagen binding activity of recombinant and N-terminally modified annexin V (anchorin CII). J Cell Biochem. 1995 Jun;58(2):208–220. doi: 10.1002/jcb.240580210. [DOI] [PubMed] [Google Scholar]
  50. Turnay Javier, Olmo Nieves, Gasset María, Iloro Ibón, Arrondo José Luis R., Lizarbe M. Antonia. Calcium-dependent conformational rearrangements and protein stability in chicken annexin A5. Biophys J. 2002 Oct;83(4):2280–2291. doi: 10.1016/s0006-3495(02)73988-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tzima E., Walker J. H. Platelet annexin V: the ins and outs. Platelets. 2000 Aug;11(5):245–251. doi: 10.1080/09537100050129251. [DOI] [PubMed] [Google Scholar]
  52. Weng X., Luecke H., Song I. S., Kang D. S., Kim S. H., Huber R. Crystal structure of human annexin I at 2.5 A resolution. Protein Sci. 1993 Mar;2(3):448–458. doi: 10.1002/pro.5560020317. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES