Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jul 15;373(Pt 2):475–484. doi: 10.1042/BJ20021630

Processing of alpha4 integrin by the proprotein convertases: histidine at position P6 regulates cleavage.

Eric Bergeron 1, Ajoy Basak 1, Etienne Decroly 1, Nabil G Seidah 1
PMCID: PMC1223497  PMID: 12691605

Abstract

The proprotein convertases (PCs) participate in the limited proteolysis of integrin alpha4 subunit at the H(592)VISKR(597) downward arrow ST site (where underlined residues indicate positively charged amino acids important for PC-mediated cleavage and downward arrow indicates the cleavage site), since this cleavage is inhibited by the serpin alpha1-PDX (alpha1-antitrypsin Portland). Co-expression of alpha4 with each convertase in LoVo (furin-deficient human colon carcinoma) cells revealed that furin and proprotein convertase 5A (PC5A) are the best pro-alpha4 convertases. In agreement, processing of endogenous pro-alpha4 in human lymphoblastoid CEM-T4 cells was enhanced greatly in stable transfectants overexpressing either enzyme. In many leucocyte cell lines, the expression of furin closely correlated with the endogenous processing efficacy, suggesting that furin is a candidate pro-alpha4 convertase. Mutational analysis showed that replacement of P1 Arg(597) with alanine (R597A) abrogated cleavage, whereas the P6 mutant H592R is even better processed by the endogenous convertases of Chinese-hamster ovary CHO-K1 cells. In vitro kinetic studies using synthetic peptides confirmed the importance of a positively charged residue at P6 and showed that wild-type alpha4 processing is performed best by furin and PC5A at acidic and neutral pHs, respectively. Biosynthetic analysis of pro-alpha4 and its H592R and H592K mutants in the presence or absence of the weak base, NH(4)Cl, revealed that the P6 histidine residue renders its processing by furin sensitive to cellular pH. This suggests that pro-alpha4 cleavage occurs preferentially in acidic compartments. In conclusion, although the accepted furin processing motif is Arg-Xaa-(Lys/Arg)-Arg downward arrow, our data further extend it to include a regulatory histidine residue at P6 in precursors that lack a basic residue at P4.

Full Text

The Full Text of this article is available as a PDF (271.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akatsu T., Ono K., Murakami T., Katayama Y., Nishikawa M., Wada S., Yamamoto M., Kugai N., Matsuura N., Takada Y. Chinese hamster ovary cells expressing alpha4beta1 integrin stimulate osteoclast formation in vitro. J Bone Miner Res. 1998 Aug;13(8):1251–1259. doi: 10.1359/jbmr.1998.13.8.1251. [DOI] [PubMed] [Google Scholar]
  2. Anderson E. D., Thomas L., Hayflick J. S., Thomas G. Inhibition of HIV-1 gp160-dependent membrane fusion by a furin-directed alpha 1-antitrypsin variant. J Biol Chem. 1993 Nov 25;268(33):24887–24891. [PubMed] [Google Scholar]
  3. Anderson E. D., VanSlyke J. K., Thulin C. D., Jean F., Thomas G. Activation of the furin endoprotease is a multiple-step process: requirements for acidification and internal propeptide cleavage. EMBO J. 1997 Apr 1;16(7):1508–1518. doi: 10.1093/emboj/16.7.1508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Basak A., Zhong M., Munzer J. S., Chrétien M., Seidah N. G. Implication of the proprotein convertases furin, PC5 and PC7 in the cleavage of surface glycoproteins of Hong Kong, Ebola and respiratory syncytial viruses: a comparative analysis with fluorogenic peptides. Biochem J. 2001 Feb 1;353(Pt 3):537–545. doi: 10.1042/0264-6021:3530537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bass J., Turck C., Rouard M., Steiner D. F. Furin-mediated processing in the early secretory pathway: sequential cleavage and degradation of misfolded insulin receptors. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11905–11909. doi: 10.1073/pnas.97.22.11905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beauregard K. E., Collier R. J., Swanson J. A. Proteolytic activation of receptor-bound anthrax protective antigen on macrophages promotes its internalization. Cell Microbiol. 2000 Jun;2(3):251–258. doi: 10.1046/j.1462-5822.2000.00052.x. [DOI] [PubMed] [Google Scholar]
  7. Bednarczyk J. L., Szabo M. C., McIntyre B. W. Post-translational processing of the leukocyte integrin alpha 4 beta 1. J Biol Chem. 1992 Dec 15;267(35):25274–25281. [PubMed] [Google Scholar]
  8. Benjannet S., Savaria D., Laslop A., Munzer J. S., Chrétien M., Marcinkiewicz M., Seidah N. G. Alpha1-antitrypsin Portland inhibits processing of precursors mediated by proprotein convertases primarily within the constitutive secretory pathway. J Biol Chem. 1997 Oct 17;272(42):26210–26218. doi: 10.1074/jbc.272.42.26210. [DOI] [PubMed] [Google Scholar]
  9. Berlin C., Berg E. L., Briskin M. J., Andrew D. P., Kilshaw P. J., Holzmann B., Weissman I. L., Hamann A., Butcher E. C. Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell. 1993 Jul 16;74(1):185–195. doi: 10.1016/0092-8674(93)90305-a. [DOI] [PubMed] [Google Scholar]
  10. Berthet V., Rigot V., Champion S., Secchi J., Fouchier F., Marvaldi J., Luis J. Role of endoproteolytic processing in the adhesive and signaling functions of alphavbeta5 integrin. J Biol Chem. 2000 Oct 27;275(43):33308–33313. doi: 10.1074/jbc.M004834200. [DOI] [PubMed] [Google Scholar]
  11. Blue M. L., Davis G., Conrad P., Kelley K. Specific cleavage of the alpha 4 integrin associated with activation of peripheral T lymphocytes. Immunology. 1993 Jan;78(1):80–85. [PMC free article] [PubMed] [Google Scholar]
  12. Brennan S. O., Nakayama K. Cleavage of proalbumin peptides by furin reveals unexpected restrictions at the P2 and P'1 sites. FEBS Lett. 1994 Jun 20;347(1):80–84. doi: 10.1016/0014-5793(94)00511-7. [DOI] [PubMed] [Google Scholar]
  13. Cain Brian M., Vishnuvardhan Daesety, Wang Wenge, Foulon Thierry, Cadel Sandrine, Cohen Paul, Beinfeld Margery C. Production, purification, and characterization of recombinant prohormone convertase 5 from baculovirus-infected insect cells. Protein Expr Purif. 2002 Mar;24(2):227–233. doi: 10.1006/prep.2001.1557. [DOI] [PubMed] [Google Scholar]
  14. Chapman R. E., Munro S. Retrieval of TGN proteins from the cell surface requires endosomal acidification. EMBO J. 1994 May 15;13(10):2305–2312. doi: 10.1002/j.1460-2075.1994.tb06514.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cui Y., Hackenmiller R., Berg L., Jean F., Nakayama T., Thomas G., Christian J. L. The activity and signaling range of mature BMP-4 is regulated by sequential cleavage at two sites within the prodomain of the precursor. Genes Dev. 2001 Nov 1;15(21):2797–2802. doi: 10.1101/gad.940001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Decroly E., Benjannet S., Savaria D., Seidah N. G. Comparative functional role of PC7 and furin in the processing of the HIV envelope glycoprotein gp160. FEBS Lett. 1997 Mar 17;405(1):68–72. doi: 10.1016/s0014-5793(97)00156-7. [DOI] [PubMed] [Google Scholar]
  17. Decroly E., Wouters S., Di Bello C., Lazure C., Ruysschaert J. M., Seidah N. G. Identification of the paired basic convertases implicated in HIV gp160 processing based on in vitro assays and expression in CD4(+) cell lines. J Biol Chem. 1996 Nov 29;271(48):30442–30450. doi: 10.1074/jbc.271.48.30442. [DOI] [PubMed] [Google Scholar]
  18. Dedhar S. Integrins and signal transduction. Curr Opin Hematol. 1999 Jan;6(1):37–43. doi: 10.1097/00062752-199901000-00007. [DOI] [PubMed] [Google Scholar]
  19. Delwel G. O., Kuikman I., van der Schors R. C., de Melker A. A., Sonnenberg A. Identification of the cleavage sites in the alpha6A integrin subunit: structural requirements for cleavage and functional analysis of the uncleaved alpha6Abeta1 integrin. Biochem J. 1997 May 15;324(Pt 1):263–272. doi: 10.1042/bj3240263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Demaurex N., Furuya W., D'Souza S., Bonifacino J. S., Grinstein S. Mechanism of acidification of the trans-Golgi network (TGN). In situ measurements of pH using retrieval of TGN38 and furin from the cell surface. J Biol Chem. 1998 Jan 23;273(4):2044–2051. doi: 10.1074/jbc.273.4.2044. [DOI] [PubMed] [Google Scholar]
  21. Gordon V. M., Klimpel K. R., Arora N., Henderson M. A., Leppla S. H. Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases. Infect Immun. 1995 Jan;63(1):82–87. doi: 10.1128/iai.63.1.82-87.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Graesser D., Mahooti S., Haas T., Davis S., Clark R. B., Madri J. A. The interrelationship of alpha4 integrin and matrix metalloproteinase-2 in the pathogenesis of experimental autoimmune encephalomyelitis. Lab Invest. 1998 Nov;78(11):1445–1458. [PubMed] [Google Scholar]
  23. Hemler M. E., Elices M. J., Parker C., Takada Y. Structure of the integrin VLA-4 and its cell-cell and cell-matrix adhesion functions. Immunol Rev. 1990 Apr;114:45–65. doi: 10.1111/j.1600-065x.1990.tb00561.x. [DOI] [PubMed] [Google Scholar]
  24. Hynes Richard O. Integrins: bidirectional, allosteric signaling machines. Cell. 2002 Sep 20;110(6):673–687. doi: 10.1016/s0092-8674(02)00971-6. [DOI] [PubMed] [Google Scholar]
  25. Khatib Abdel-Majid, Siegfried Géraldine, Chrétien Michel, Metrakos Peter, Seidah Nabil G. Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy. Am J Pathol. 2002 Jun;160(6):1921–1935. doi: 10.1016/S0002-9440(10)61140-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Krysan D. J., Rockwell N. C., Fuller R. S. Quantitative characterization of furin specificity. Energetics of substrate discrimination using an internally consistent set of hexapeptidyl methylcoumarinamides. J Biol Chem. 1999 Aug 13;274(33):23229–23234. doi: 10.1074/jbc.274.33.23229. [DOI] [PubMed] [Google Scholar]
  27. Laschinger M., Engelhardt B. Interaction of alpha4-integrin with VCAM-1 is involved in adhesion of encephalitogenic T cell blasts to brain endothelium but not in their transendothelial migration in vitro. J Neuroimmunol. 2000 Jan 3;102(1):32–43. doi: 10.1016/s0165-5728(99)00156-3. [DOI] [PubMed] [Google Scholar]
  28. Lazure C., Gauthier D., Jean F., Boudreault A., Seidah N. G., Bennett H. P., Hendy G. N. In vitro cleavage of internally quenched fluorogenic human proparathyroid hormone and proparathyroid-related peptide substrates by furin. Generation of a potent inhibitor. J Biol Chem. 1998 Apr 10;273(15):8572–8580. doi: 10.1074/jbc.273.15.8572. [DOI] [PubMed] [Google Scholar]
  29. Lehmann M., Rigot V., Seidah N. G., Marvaldi J., Lissitzky J. C. Lack of integrin alpha-chain endoproteolytic cleavage in furin-deficient human colon adenocarcinoma cells LoVo. Biochem J. 1996 Aug 1;317(Pt 3):803–809. doi: 10.1042/bj3170803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lissitzky J. C., Luis J., Munzer J. S., Benjannet S., Parat F., Chrétien M., Marvaldi J., Seidah N. G. Endoproteolytic processing of integrin pro-alpha subunits involves the redundant function of furin and proprotein convertase (PC) 5A, but not paired basic amino acid converting enzyme (PACE) 4, PC5B or PC7. Biochem J. 2000 Feb 15;346(Pt 1):133–138. [PMC free article] [PubMed] [Google Scholar]
  31. Lobb R. R., Hemler M. E. The pathophysiologic role of alpha 4 integrins in vivo. J Clin Invest. 1994 Nov;94(5):1722–1728. doi: 10.1172/JCI117519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Logeat F., Bessia C., Brou C., LeBail O., Jarriault S., Seidah N. G., Israël A. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8108–8112. doi: 10.1073/pnas.95.14.8108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nour Nadia, Basak Ajoy, Chrétien Michel, Seidah Nabil G. Structure-function analysis of the prosegment of the proprotein convertase PC5A. J Biol Chem. 2002 Oct 31;278(5):2886–2895. doi: 10.1074/jbc.M208009200. [DOI] [PubMed] [Google Scholar]
  34. Rigot V., André F., Lehmann M., Lissitzky J. C., Marvaldi J., Luis J. Biogenesis of alpha6beta4 integrin in a human colonic adenocarcinoma cell line involvement of calnexin. Eur J Biochem. 1999 May;261(3):659–666. doi: 10.1046/j.1432-1327.1999.00300.x. [DOI] [PubMed] [Google Scholar]
  35. Roebroek A. J., Umans L., Pauli I. G., Robertson E. J., van Leuven F., Van de Ven W. J., Constam D. B. Failure of ventral closure and axial rotation in embryos lacking the proprotein convertase Furin. Development. 1998 Dec;125(24):4863–4876. doi: 10.1242/dev.125.24.4863. [DOI] [PubMed] [Google Scholar]
  36. Seidah N. G., Chrétien M., Day R. The family of subtilisin/kexin like pro-protein and pro-hormone convertases: divergent or shared functions. Biochimie. 1994;76(3-4):197–209. doi: 10.1016/0300-9084(94)90147-3. [DOI] [PubMed] [Google Scholar]
  37. Seidah N. G., Chrétien M. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res. 1999 Nov 27;848(1-2):45–62. doi: 10.1016/s0006-8993(99)01909-5. [DOI] [PubMed] [Google Scholar]
  38. Seidah N. G., Day R., Marcinkiewicz M., Chrétien M. Precursor convertases: an evolutionary ancient, cell-specific, combinatorial mechanism yielding diverse bioactive peptides and proteins. Ann N Y Acad Sci. 1998 May 15;839:9–24. doi: 10.1111/j.1749-6632.1998.tb10727.x. [DOI] [PubMed] [Google Scholar]
  39. Sengbusch Jennifer K., He Wei, Pinco Karen A., Yang Joy T. Dual functions of [alpha]4[beta]1 integrin in epicardial development: initial migration and long-term attachment. J Cell Biol. 2002 May 20;157(5):873–882. doi: 10.1083/jcb.200203075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Takahashi S., Kasai K., Hatsuzawa K., Kitamura N., Misumi Y., Ikehara Y., Murakami K., Nakayama K. A mutation of furin causes the lack of precursor-processing activity in human colon carcinoma LoVo cells. Biochem Biophys Res Commun. 1993 Sep 15;195(2):1019–1026. doi: 10.1006/bbrc.1993.2146. [DOI] [PubMed] [Google Scholar]
  41. Teixidó J., Parker C. M., Kassner P. D., Hemler M. E. Functional and structural analysis of VLA-4 integrin alpha 4 subunit cleavage. J Biol Chem. 1992 Jan 25;267(3):1786–1791. [PubMed] [Google Scholar]
  42. Thomas Gary. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol. 2002 Oct;3(10):753–766. doi: 10.1038/nrm934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Watanabe T., Murakami K., Nakayama K. Positional and additive effects of basic amino acids on processing of precursor proteins within the constitutive secretory pathway. FEBS Lett. 1993 Apr 12;320(3):215–218. doi: 10.1016/0014-5793(93)80589-m. [DOI] [PubMed] [Google Scholar]
  44. Wayner E. A., Garcia-Pardo A., Humphries M. J., McDonald J. A., Carter W. G. Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS-1) in plasma fibronectin. J Cell Biol. 1989 Sep;109(3):1321–1330. doi: 10.1083/jcb.109.3.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wu M. M., Grabe M., Adams S., Tsien R. Y., Moore H. P., Machen T. E. Mechanisms of pH regulation in the regulated secretory pathway. J Biol Chem. 2001 Jun 11;276(35):33027–33035. doi: 10.1074/jbc.M103917200. [DOI] [PubMed] [Google Scholar]
  46. Xiang Y., Molloy S. S., Thomas L., Thomas G. The PC6B cytoplasmic domain contains two acidic clusters that direct sorting to distinct trans-Golgi network/endosomal compartments. Mol Biol Cell. 2000 Apr;11(4):1257–1273. doi: 10.1091/mbc.11.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Xiong Jian-Ping, Stehle Thilo, Zhang Rongguang, Joachimiak Andrzej, Frech Matthias, Goodman Simon L., Arnaout M. Amin. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science. 2002 Mar 7;296(5565):151–155. doi: 10.1126/science.1069040. [DOI] [PubMed] [Google Scholar]
  48. Yang J. T., Rayburn H., Hynes R. O. Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development. 1995 Feb;121(2):549–560. doi: 10.1242/dev.121.2.549. [DOI] [PubMed] [Google Scholar]
  49. Zamir E., Geiger B. Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci. 2001 Oct;114(Pt 20):3583–3590. doi: 10.1242/jcs.114.20.3583. [DOI] [PubMed] [Google Scholar]
  50. Zanghi J. A., Mendoza T. P., Knop R. H., Miller W. M. Ammonia inhibits neural cell adhesion molecule polysialylation in Chinese hamster ovary and small cell lung cancer cells. J Cell Physiol. 1998 Nov;177(2):248–263. doi: 10.1002/(SICI)1097-4652(199811)177:2<248::AID-JCP7>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES