Abstract
A new xylanase gene, xyn10B, was isolated from the ruminal protozoan Polyplastron multivesiculatum and the gene product was characterized. XYN10B is the first protozoan family 10 glycoside hydrolase characterized so far and is a modular enzyme comprising a family 22 carbohydrate-binding module (CBM) preceding the catalytic domain. The CBM22 was shown to be a true CBM. It showed high affinity for soluble arabinoxylan and is the first example of a CBM22 that binds strongly to celluloses of various crystallinities. The enzymic properties of XYN10B were also analysed. Its optimal temperature and pH for activity were 39 degrees C and 7.0 respectively; these values being close to those of the ruminal ecosystem. The phylogenetic relationships between the XYN10B CBM22 or catalytic domain and related sequences from ruminal and non-ruminal bacteria and eukaryotes are reported. The xyn10B gene is shown to lack introns.
Full Text
The Full Text of this article is available as a PDF (203.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abou-Hachem Maher, Karlsson Eva Nordberg, Simpson Peter J., Linse Sara, Sellers Peter, Williamson Michael P., Jamieson Stuart J., Gilbert Harry J., Bolam David N., Holst Olle. Calcium binding and thermostability of carbohydrate binding module CBM4-2 of Xyn10A from Rhodothermus marinus. Biochemistry. 2002 May 7;41(18):5720–5729. doi: 10.1021/bi012094a. [DOI] [PubMed] [Google Scholar]
- Bibollet X., Bosc N., Matulova M., Delort A. M., Gaudet G., Forano E. 13C and 1H NMR study of cellulose metabolism by Fibrobacter succinogenes S85. J Biotechnol. 2000 Jan 28;77(1):37–47. doi: 10.1016/s0168-1656(99)00206-0. [DOI] [PubMed] [Google Scholar]
- Blanco A., Díaz P., Zueco J., Parascandola P., Javier Pastor F. I. A multidomain xylanase from a Bacillus sp. with a region homologous to thermostabilizing domains of thermophilic enzymes. Microbiology. 1999 Aug;145(Pt 8):2163–2170. doi: 10.1099/13500872-145-8-2163. [DOI] [PubMed] [Google Scholar]
- Charnock S. J., Bolam D. N., Turkenburg J. P., Gilbert H. J., Ferreira L. M., Davies G. J., Fontes C. M. The X6 "thermostabilizing" domains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry. 2000 May 2;39(17):5013–5021. doi: 10.1021/bi992821q. [DOI] [PubMed] [Google Scholar]
- Chen H., Li X. L., Blum D. L., Ljungdahl L. G. Two genes of the anaerobic fungus Orpinomyces sp. strain PC-2 encoding cellulases with endoglucanase activities may have arisen by gene duplication. FEMS Microbiol Lett. 1998 Feb 1;159(1):63–68. doi: 10.1111/j.1574-6968.1998.tb12842.x. [DOI] [PubMed] [Google Scholar]
- Clarke J. H., Davidson K., Gilbert H. J., Fontes C. M., Hazlewood G. P. A modular xylanase from mesophilic Cellulomonas fimi contains the same cellulose-binding and thermostabilizing domains as xylanases from thermophilic bacteria. FEMS Microbiol Lett. 1996 May 15;139(1):27–35. doi: 10.1111/j.1574-6968.1996.tb08175.x. [DOI] [PubMed] [Google Scholar]
- Devillard E., Newbold C. J., Scott K. P., Forano E., Wallace R. J., Jouany J. P., Flint H. J. A xylanase produced by the rumen anaerobic protozoan Polyplastron multivesiculatum shows close sequence similarity to family 11 xylanases from gram-positive bacteria. FEMS Microbiol Lett. 1999 Dec 1;181(1):145–152. doi: 10.1111/j.1574-6968.1999.tb08837.x. [DOI] [PubMed] [Google Scholar]
- Eschenlauer S. C., McEwan N. R., Calza R. E., Wallace R. J., Onodera R., Newbold C. J. Phylogenetic position and codon usage of two centrin genes from the rumen ciliate protozoan, Entodinium caudatum. FEMS Microbiol Lett. 1998 Sep 1;166(1):147–154. doi: 10.1111/j.1574-6968.1998.tb13196.x. [DOI] [PubMed] [Google Scholar]
- Fontes C. M., Hazlewood G. P., Morag E., Hall J., Hirst B. H., Gilbert H. J. Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. Biochem J. 1995 Apr 1;307(Pt 1):151–158. doi: 10.1042/bj3070151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia-Vallvé S., Romeu A., Palau J. Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol. 2000 Mar;17(3):352–361. doi: 10.1093/oxfordjournals.molbev.a026315. [DOI] [PubMed] [Google Scholar]
- Gill J., Rixon J. E., Bolam D. N., McQueen-Mason S., Simpson P. J., Williamson M. P., Hazlewood G. P., Gilbert H. J. The type II and X cellulose-binding domains of Pseudomonas xylanase A potentiate catalytic activity against complex substrates by a common mechanism. Biochem J. 1999 Sep 1;342(Pt 2):473–480. [PMC free article] [PubMed] [Google Scholar]
- Guex N., Diemand A., Peitsch M. C. Protein modelling for all. Trends Biochem Sci. 1999 Sep;24(9):364–367. doi: 10.1016/s0968-0004(99)01427-9. [DOI] [PubMed] [Google Scholar]
- Johnson P. E., Brun E., MacKenzie L. F., Withers S. G., McIntosh L. P. The cellulose-binding domains from Cellulomonas fimi beta-1, 4-glucanase CenC bind nitroxide spin-labeled cellooligosaccharides in multiple orientations. J Mol Biol. 1999 Apr 2;287(3):609–625. doi: 10.1006/jmbi.1999.2627. [DOI] [PubMed] [Google Scholar]
- Joshi M. D., Sidhu G., Pot I., Brayer G. D., Withers S. G., McIntosh L. P. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. J Mol Biol. 2000 May 26;299(1):255–279. doi: 10.1006/jmbi.2000.3722. [DOI] [PubMed] [Google Scholar]
- Meissner K., Wassenberg D., Liebl W. The thermostabilizing domain of the modular xylanase XynA of Thermotoga maritima represents a novel type of binding domain with affinity for soluble xylan and mixed-linkage beta-1,3/beta-1, 4-glucan. Mol Microbiol. 2000 May;36(4):898–912. doi: 10.1046/j.1365-2958.2000.01909.x. [DOI] [PubMed] [Google Scholar]
- Raghothama S., Simpson P. J., Szabó L., Nagy T., Gilbert H. J., Williamson M. P. Solution structure of the CBM10 cellulose binding module from Pseudomonas xylanase A. Biochemistry. 2000 Feb 8;39(5):978–984. doi: 10.1021/bi992163+. [DOI] [PubMed] [Google Scholar]
- Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
- Sakka K., Takada G., Karita S., Ohmiya K. Identification and characterization of cellulose-binding domains in xylanase A of Clostridium stercorarium. Ann N Y Acad Sci. 1996 May 15;782:241–251. doi: 10.1111/j.1749-6632.1996.tb40565.x. [DOI] [PubMed] [Google Scholar]
- Simpson Peter J., Jamieson Stuart J., Abou-Hachem Maher, Karlsson Eva Nordberg, Gilbert Harry J., Holst Olle, Williamson Michael P. The solution structure of the CBM4-2 carbohydrate binding module from a thermostable Rhodothermus marinus xylanase. Biochemistry. 2002 May 7;41(18):5712–5719. doi: 10.1021/bi012093i. [DOI] [PubMed] [Google Scholar]
- Sunna A., Gibbs M. D., Bergquist P. L. Identification of novel beta-mannan- and beta-glucan-binding modules: evidence for a superfamily of carbohydrate-binding modules. Biochem J. 2001 Jun 15;356(Pt 3):791–798. doi: 10.1042/0264-6021:3560791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sunna A., Gibbs M. D., Bergquist P. L. The thermostabilizing domain, XynA, of Caldibacillus cellulovorans xylanase is a xylan binding domain. Biochem J. 2000 Mar 15;346(Pt 3):583–586. [PMC free article] [PubMed] [Google Scholar]
- Winterhalter C., Heinrich P., Candussio A., Wich G., Liebl W. Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol. 1995 Feb;15(3):431–444. doi: 10.1111/j.1365-2958.1995.tb02257.x. [DOI] [PubMed] [Google Scholar]
- Xie H., Gilbert H. J., Charnock S. J., Davies G. J., Williamson M. P., Simpson P. J., Raghothama S., Fontes C. M., Dias F. M., Ferreira L. M. Clostridium thermocellum Xyn10B carbohydrate-binding module 22-2: the role of conserved amino acids in ligand binding. Biochemistry. 2001 Aug 7;40(31):9167–9176. doi: 10.1021/bi0106742. [DOI] [PubMed] [Google Scholar]
- Zhang J. X., Martin J., Flint H. J. Identification of non-catalytic conserved regions in xylanases encoded by the xynB and xynD genes of the cellulolytic rumen anaerobe Ruminococcus flavefaciens. Mol Gen Genet. 1994 Oct 28;245(2):260–264. doi: 10.1007/BF00283275. [DOI] [PubMed] [Google Scholar]