Abstract
As an acute-phase protein, human C-reactive protein (CRP) is clinically important. CRPs were purified from several samples in six different pathological conditions, where their levels ranged from 22 to 342 microg/ml. Small, but significant, variations in electrophoretic mobilities on native PAGE suggested differences in molecular mass, charge and/or shape. Following separation by SDS/PAGE, they showed single subunits with some differences in their molecular masses ranging between 27 and 30.5 kDa, but for a particular disease, the mobility was the same for CRPs purified from multiple individuals or pooled sera. Isoelectric focusing (IEF) also indicated that the purified CRPs differed from each other. Glycosylation was demonstrated in these purified CRPs by Digoxigenin kits, neuraminidase treatment and binding with lectins. The presence of N-linked sugar moiety was confirmed by N-glycosidase F digestion. The presence of sialic acid, glucose, galactose and mannose has been demonstrated by gas liquid chromatography, mass spectroscopic and fluorimetric analysis. Matrix-assisted laser-desorption ionization analysis of the tryptic digests of three CRPs showed systematic absence of two peptide fragments, one at the N-terminus and the other near the C-terminus. Model-building suggested that the loss of these fragments exposed two potential glycosylation sites on a cleft floor keeping the protein-protein interactions in pentraxins and calcium-dependent phosphorylcholine-binding qualitatively unaffected. Thus we have convincingly demonstrated that human CRP is glycosylated in some pathological conditions.
Full Text
The Full Text of this article is available as a PDF (241.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agrawal A., Shrive A. K., Greenhough T. J., Volanakis J. E. Topology and structure of the C1q-binding site on C-reactive protein. J Immunol. 2001 Mar 15;166(6):3998–4004. doi: 10.4049/jimmunol.166.6.3998. [DOI] [PubMed] [Google Scholar]
- Albert Christine M., Ma Jing, Rifai Nader, Stampfer Meir J., Ridker Paul M. Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation. 2002 Jun 4;105(22):2595–2599. doi: 10.1161/01.cir.0000017493.03108.1c. [DOI] [PubMed] [Google Scholar]
- Baltz M. L., de Beer F. C., Feinstein A., Munn E. A., Milstein C. P., Fletcher T. C., March J. F., Taylor J., Bruton C., Clamp J. R. Phylogenetic aspects of C-reactive protein and related proteins. Ann N Y Acad Sci. 1982;389:49–75. doi: 10.1111/j.1749-6632.1982.tb22125.x. [DOI] [PubMed] [Google Scholar]
- Chatterjee M., Sharma V., Mandal C., Sundar S., Sen S. Identification of antibodies directed against O-acetylated sialic acids in visceral leishmaniasis: its diagnostic and prognostic role. Glycoconj J. 1998 Dec;15(12):1141–1147. doi: 10.1023/a:1006963806318. [DOI] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Fu Tao, Borensztajn Jayme. Macrophage uptake of low-density lipoprotein bound to aggregated C-reactive protein: possible mechanism of foam-cell formation in atherosclerotic lesions. Biochem J. 2002 Aug 15;366(Pt 1):195–201. doi: 10.1042/BJ20020045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabay C., Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999 Feb 11;340(6):448–454. doi: 10.1056/NEJM199902113400607. [DOI] [PubMed] [Google Scholar]
- Kuhn J., Götting C., Schnölzer M., Kempf T., Brinkmann T., Kleesiek K. First isolation of human UDP-D-xylose: proteoglycan core protein beta-D-xylosyltransferase secreted from cultured JAR choriocarcinoma cells. J Biol Chem. 2000 Nov 21;276(7):4940–4947. doi: 10.1074/jbc.M005111200. [DOI] [PubMed] [Google Scholar]
- Köttgen E., Hell B., Kage A., Tauber R. Lectin specificity and binding characteristics of human C-reactive protein. J Immunol. 1992 Jul 15;149(2):445–453. [PubMed] [Google Scholar]
- Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
- Lasson A., Göransson J. No microheterogenous changes of plasma C-reactive protein found in man during various diseases. Scand J Clin Lab Invest. 1999 Jul;59(4):293–304. doi: 10.1080/00365519950185661. [DOI] [PubMed] [Google Scholar]
- Mandal C., Basu S., Mandal C. Physiochemical studies on achatininH, a novel sialic acid-binding lectin. Biochem J. 1989 Jan 1;257(1):65–71. doi: 10.1042/bj2570065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandal C., Biswas M., Nagpurkar A., Mookerjea S. Isolation of a phosphoryl choline-binding protein from the hemolymph of the snail, Achatina fulica. Dev Comp Immunol. 1991 Fall;15(4):227–239. doi: 10.1016/0145-305x(91)90016-r. [DOI] [PubMed] [Google Scholar]
- Mandal C., Chatterjee M., Sinha D. Investigation of 9-O-acetylated sialoglycoconjugates in childhood acute lymphoblastic leukaemia. Br J Haematol. 2000 Sep;110(4):801–812. doi: 10.1046/j.1365-2141.2000.02105.x. [DOI] [PubMed] [Google Scholar]
- Mandal C., Kingery B. D., Anchin J. M., Subramaniam S., Linthicum D. S. ABGEN: a knowledge-based automated approach for antibody structure modeling. Nat Biotechnol. 1996 Mar;14(3):323–328. doi: 10.1038/nbt0396-323. [DOI] [PubMed] [Google Scholar]
- Mandal C., Sinha S., Mandal C. Lectin like properties and differential sugar binding characteristics of C-reactive proteins purified from sera of normal and pollutant induced Labeo rohita. Glycoconj J. 1999 Nov;16(11):741–750. doi: 10.1023/a:1007167611778. [DOI] [PubMed] [Google Scholar]
- Marnell L. L., Mold C., Volzer M. A., Burlingame R. W., Du Clos T. W. C-reactive protein binds to Fc gamma RI in transfected COS cells. J Immunol. 1995 Aug 15;155(4):2185–2193. [PubMed] [Google Scholar]
- O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
- Pal S., Chatterjee M., Bhattacharya D. K., Bandhyopadhyay S., Mandal C. Identification and purification of cytolytic antibodies directed against O-acetylated sialic acid in childhood acute lymphoblastic leukemia. Glycobiology. 2000 Jun;10(6):539–549. doi: 10.1093/glycob/10.6.539. [DOI] [PubMed] [Google Scholar]
- Paul I., Mandal C., Allen A. K., Mandal C. Glycosylated molecular variants of C-reactive proteins from the major carp Catla catla in fresh and polluted aquatic environments. Glycoconj J. 2001 Jul;18(7):547–556. doi: 10.1023/a:1019696430477. [DOI] [PubMed] [Google Scholar]
- Paul I., Mandal C., Mandal C. Effect of environmental pollutants on the C-reactive protein of a freshwater major carp, Catla catla. Dev Comp Immunol. 1998 Sep-Dec;22(5-6):519–532. doi: 10.1016/s0145-305x(98)00031-7. [DOI] [PubMed] [Google Scholar]
- Pepys M. B. C-reactive protein fifty years on. Lancet. 1981 Mar 21;1(8221):653–657. doi: 10.1016/s0140-6736(81)91565-8. [DOI] [PubMed] [Google Scholar]
- Sharma V., Chatterjee M., Mandal C., Sen S., Basu D. Rapid diagnosis of Indian visceral leishmaniasis using achatininH, a 9-O-acetylated sialic acid binding lectin. Am J Trop Med Hyg. 1998 May;58(5):551–554. doi: 10.4269/ajtmh.1998.58.551. [DOI] [PubMed] [Google Scholar]
- Sharma V., Chatterjee M., Sen G., Kumar C. A., Mandal C. Role of linkage specific 9-O-acetylated sialoglycoconjugates in activation of the alternate complement pathway in mammalian erythrocytes. Glycoconj J. 2000 Dec;17(12):887–893. doi: 10.1023/a:1010925414222. [DOI] [PubMed] [Google Scholar]
- Shrive A. K., Cheetham G. M., Holden D., Myles D. A., Turnell W. G., Volanakis J. E., Pepys M. B., Bloomer A. C., Greenhough T. J. Three dimensional structure of human C-reactive protein. Nat Struct Biol. 1996 Apr;3(4):346–354. doi: 10.1038/nsb0496-346. [DOI] [PubMed] [Google Scholar]
- Sinha D., Mandal C., Bhattacharya D. K. Identification of 9-O acetyl sialoglycoconjugates (9-OAcSGs) as biomarkers in childhood acute lymphoblastic leukemia using a lectin, AchatininH, as a probe. Leukemia. 1999 Jan;13(1):119–125. doi: 10.1038/sj.leu.2401239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sinha S., Mandal C., Allen A. K., Mandal C. Acute phase response of C-reactive protein of Labeo rohita to aquatic pollutants is accompanied by the appearance of distinct molecular forms. Arch Biochem Biophys. 2001 Dec 15;396(2):139–150. doi: 10.1006/abbi.2001.2592. [DOI] [PubMed] [Google Scholar]
- Sinha S., Mandal C. Microheterogeneity of C-reactive protein in the sera of fish Labeo rohita induced by metal pollutants. Biochem Biophys Res Commun. 1996 Sep 24;226(3):681–687. doi: 10.1006/bbrc.1996.1414. [DOI] [PubMed] [Google Scholar]
- Taskinen Sanna, Kovanen Petri T., Jarva Hanna, Meri Seppo, Pentikäinen Markku O. Binding of C-reactive protein to modified low-density-lipoprotein particles: identification of cholesterol as a novel ligand for C-reactive protein. Biochem J. 2002 Oct 15;367(Pt 2):403–412. doi: 10.1042/BJ20020492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volanakis J. E. Human C-reactive protein: expression, structure, and function. Mol Immunol. 2001 Aug;38(2-3):189–197. doi: 10.1016/s0161-5890(01)00042-6. [DOI] [PubMed] [Google Scholar]
- Weinhold B., Bader A., Poli V., Rüther U. Interleukin-6 is necessary, but not sufficient, for induction of the humanC-reactive protein gene in vivo. Biochem J. 1997 Aug 1;325(Pt 3):617–621. doi: 10.1042/bj3250617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinhold B., Rüther U. Interleukin-6-dependent and -independent regulation of the human C-reactive protein gene. Biochem J. 1997 Oct 15;327(Pt 2):425–429. doi: 10.1042/bj3270425. [DOI] [PMC free article] [PubMed] [Google Scholar]