Abstract
Previous publications from our group [Gil, Chaib, Pelliccioni and Aguilera (2000) FEBS Lett. 481, 177-182; Gil, Chaib, Blasi and Aguilera (2001) Biochem. J. 356, 97-103] have reported the activation, in rat brain synaptosomes, of several phosphoproteins, such as neurotrophin tyrosine kinase (Trk) A receptor, phospholipase Cgamma-1, protein kinase C (PKC) isoforms and extracellular-signal-regulated kinases 1 and 2 (ERK-1/2). In the present study, we examined, by means of phospho-specific antibodies, the activation of the signalling cascades involving neurotrophin Trk receptor, Akt kinase and ERK pathway, in cultured cortical neurons from foetal rat brain, by tetanus toxin (TeTx) as well as by the C-terminal part of its heavy chain (H(C)-TeTx). TeTx and H(C)-TeTx induce fast and transient phosphorylation of Trk receptor at Tyr(674) and Tyr(675), but not at Tyr(490), although the potency of TeTx in this action was higher when compared with H(C)-TeTx action. Moreover, H(C)-TeTx and TeTx also induced phosphorylation of Akt (at Ser(473) and Thr(308)) and of ERK-1/2 (Thr(202)/Tyr(204)), in a time- and concentration-dependent manner. The detection of TeTx- and H(C)-TeTx-induced phosphorylation at Ser(9) of glycogen synthase kinase 3beta confirms Akt activation. In the extended analysis of the ERK pathway, phosphorylation of the Raf, mitogen-activated protein kinase kinase (MEK)-1/2 and p90Rsk kinases and phosphorylation of the transcription factor cAMP-response-element-binding protein were detected. The use of tyrphostin AG879, an inhibitor of Trk receptors, demonstrates their necessary participation in the H(C)-TeTx-induced activation of Akt and ERK pathways, as well as in the phosphorylation of phospholipase Cgamma-1. Furthermore, both pathways are totally dependent on phosphatidylinositol 3-kinase action, and they are independent of PKC action, as assessed using wortmannin and Ro-31-8220 as inhibitors. The activation of PKC isoforms was determined by their translocation from the cytosolic compartment to the membranous compartment, showing a clear H(C)-TeTx-induced translocation of PKC-alpha and -beta, but not of PKC- epsilon.
Full Text
The Full Text of this article is available as a PDF (267.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alessi D. R., James S. R., Downes C. P., Holmes A. B., Gaffney P. R., Reese C. B., Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997 Apr 1;7(4):261–269. doi: 10.1016/s0960-9822(06)00122-9. [DOI] [PubMed] [Google Scholar]
- Barbacid M. Nerve growth factor: a tale of two receptors. Oncogene. 1993 Aug;8(8):2033–2042. [PubMed] [Google Scholar]
- Cheng J. J., Wung B. S., Chao Y. J., Wang D. L. Sequential activation of protein kinase C (PKC)-alpha and PKC-epsilon contributes to sustained Raf/ERK1/2 activation in endothelial cells under mechanical strain. J Biol Chem. 2001 Jun 8;276(33):31368–31375. doi: 10.1074/jbc.M011317200. [DOI] [PubMed] [Google Scholar]
- Cunningham M. E., Stephens R. M., Kaplan D. R., Greene L. A. Autophosphorylation of activation loop tyrosines regulates signaling by the TRK nerve growth factor receptor. J Biol Chem. 1997 Apr 18;272(16):10957–10967. doi: 10.1074/jbc.272.16.10957. [DOI] [PubMed] [Google Scholar]
- Datta S. R., Brunet A., Greenberg M. E. Cellular survival: a play in three Akts. Genes Dev. 1999 Nov 15;13(22):2905–2927. doi: 10.1101/gad.13.22.2905. [DOI] [PubMed] [Google Scholar]
- Dechant G., Barde Y. A. Signalling through the neurotrophin receptor p75NTR. Curr Opin Neurobiol. 1997 Jun;7(3):413–418. doi: 10.1016/s0959-4388(97)80071-2. [DOI] [PubMed] [Google Scholar]
- Dhillon Amardeep S., Pollock Claire, Steen Helge, Shaw Peter E., Mischak Harald, Kolch Walter. Cyclic AMP-dependent kinase regulates Raf-1 kinase mainly by phosphorylation of serine 259. Mol Cell Biol. 2002 May;22(10):3237–3246. doi: 10.1128/MCB.22.10.3237-3246.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duchemin Anne-Marie, Ren Qun, Mo Lili, Neff Norton H., Hadjiconstantinou Maria. GM1 ganglioside induces phosphorylation and activation of Trk and Erk in brain. J Neurochem. 2002 May;81(4):696–707. doi: 10.1046/j.1471-4159.2002.00831.x. [DOI] [PubMed] [Google Scholar]
- Emsley P., Fotinou C., Black I., Fairweather N. F., Charles I. G., Watts C., Hewitt E., Isaacs N. W. The structures of the H(C) fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. J Biol Chem. 2000 Mar 24;275(12):8889–8894. doi: 10.1074/jbc.275.12.8889. [DOI] [PubMed] [Google Scholar]
- Fishman P. S., Parks D. A., Patwardhan A. J., Matthews C. C. Neuronal binding of tetanus toxin compared to its ganglioside binding fragment (H(c)). Nat Toxins. 1999;7(4):151–156. [PubMed] [Google Scholar]
- Fuller G., Veitch K., Ho L. K., Cruise L., Morris B. J. Activation of p44/p42 MAP kinase in striatal neurons via kainate receptors and PI3 kinase. Brain Res Mol Brain Res. 2001 Apr 18;89(1-2):126–132. doi: 10.1016/s0169-328x(01)00071-7. [DOI] [PubMed] [Google Scholar]
- Gil C., Chaib-Oukadour I., Blasi J., Aguilera J. HC fragment (C-terminal portion of the heavy chain) of tetanus toxin activates protein kinase C isoforms and phosphoproteins involved in signal transduction. Biochem J. 2001 May 15;356(Pt 1):97–103. doi: 10.1042/0264-6021:3560097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gil C., Chaïb-Oukadour I., Pelliccioni P., Aguilera J. Activation of signal transduction pathways involving trkA, PLCgamma-1, PKC isoforms and ERK-1/2 by tetanus toxin. FEBS Lett. 2000 Sep 15;481(2):177–182. doi: 10.1016/s0014-5793(00)02002-0. [DOI] [PubMed] [Google Scholar]
- Gil C., Ruiz-Meana M., Alava M., Yavin E., Aguilera J. Tetanus toxin enhances protein kinase C activity translocation and increases polyphosphoinositide hydrolysis in rat cerebral cortex preparations. J Neurochem. 1998 Apr;70(4):1636–1643. doi: 10.1046/j.1471-4159.1998.70041636.x. [DOI] [PubMed] [Google Scholar]
- Grimes M. L., Zhou J., Beattie E. C., Yuen E. C., Hall D. E., Valletta J. S., Topp K. S., LaVail J. H., Bunnett N. W., Mobley W. C. Endocytosis of activated TrkA: evidence that nerve growth factor induces formation of signaling endosomes. J Neurosci. 1996 Dec 15;16(24):7950–7964. doi: 10.1523/JNEUROSCI.16-24-07950.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ibáez Carlos F. Jekyll-Hyde neurotrophins: the story of proNGF. Trends Neurosci. 2002 Jun;25(6):284–286. doi: 10.1016/s0166-2236(02)02169-0. [DOI] [PubMed] [Google Scholar]
- Ireton K., Payrastre B., Cossart P. The Listeria monocytogenes protein InlB is an agonist of mammalian phosphoinositide 3-kinase. J Biol Chem. 1999 Jun 11;274(24):17025–17032. doi: 10.1074/jbc.274.24.17025. [DOI] [PubMed] [Google Scholar]
- Kaplan D. R., Miller F. D. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 2000 Jun;10(3):381–391. doi: 10.1016/s0959-4388(00)00092-1. [DOI] [PubMed] [Google Scholar]
- Kraft A. S., Anderson W. B. Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane. Nature. 1983 Feb 17;301(5901):621–623. doi: 10.1038/301621a0. [DOI] [PubMed] [Google Scholar]
- Kumari S., Liu X., Nguyen T., Zhang X., D'Mello S. R. Distinct phosphorylation patterns underlie Akt activation by different survival factors in neurons. Brain Res Mol Brain Res. 2001 Nov 30;96(1-2):157–162. doi: 10.1016/s0006-8993(01)03045-1. [DOI] [PubMed] [Google Scholar]
- Kume T., Nishikawa H., Tomioka H., Katsuki H., Akaike A., Kaneko S., Maeda T., Kihara T., Shimohama S. p75-mediated neuroprotection by NGF against glutamate cytotoxicity in cortical cultures. Brain Res. 2000 Jan 10;852(2):279–289. doi: 10.1016/s0006-8993(99)02226-x. [DOI] [PubMed] [Google Scholar]
- Lalli Giovanna, Schiavo Giampietro. Analysis of retrograde transport in motor neurons reveals common endocytic carriers for tetanus toxin and neurotrophin receptor p75NTR. J Cell Biol. 2002 Jan 21;156(2):233–239. doi: 10.1083/jcb.200106142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee Francis S., Rajagopal Rithwick, Chao Moses V. Distinctive features of Trk neurotrophin receptor transactivation by G protein-coupled receptors. Cytokine Growth Factor Rev. 2002 Feb;13(1):11–17. doi: 10.1016/s1359-6101(01)00024-7. [DOI] [PubMed] [Google Scholar]
- Marais R., Light Y., Paterson H. F., Marshall C. J. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J. 1995 Jul 3;14(13):3136–3145. doi: 10.1002/j.1460-2075.1995.tb07316.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marte B. M., Downward J. PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci. 1997 Sep;22(9):355–358. doi: 10.1016/s0968-0004(97)01097-9. [DOI] [PubMed] [Google Scholar]
- Martinez J. J., Mulvey M. A., Schilling J. D., Pinkner J. S., Hultgren S. J. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 2000 Jun 15;19(12):2803–2812. doi: 10.1093/emboj/19.12.2803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrison D. K., Heidecker G., Rapp U. R., Copeland T. D. Identification of the major phosphorylation sites of the Raf-1 kinase. J Biol Chem. 1993 Aug 15;268(23):17309–17316. [PubMed] [Google Scholar]
- Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 1995 Apr;9(7):484–496. [PubMed] [Google Scholar]
- Pang L., Zheng C. F., Guan K. L., Saltiel A. R. Nerve growth factor stimulates a novel protein kinase in PC-12 cells that phosphorylates and activates mitogen-activated protein kinase kinase (MEK). Biochem J. 1995 Apr 15;307(Pt 2):513–519. doi: 10.1042/bj3070513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puceat M., Vassort G. Purinergic stimulation of rat cardiomyocytes induces tyrosine phosphorylation and membrane association of phospholipase C gamma: a major mechanism for InsP3 generation. Biochem J. 1996 Sep 1;318(Pt 2):723–728. doi: 10.1042/bj3180723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robbins D. J., Zhen E., Owaki H., Vanderbilt C. A., Ebert D., Geppert T. D., Cobb M. H. Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro. J Biol Chem. 1993 Mar 5;268(7):5097–5106. [PubMed] [Google Scholar]
- Schiavo G., Matteoli M., Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol Rev. 2000 Apr;80(2):717–766. doi: 10.1152/physrev.2000.80.2.717. [DOI] [PubMed] [Google Scholar]
- Schulte R., Zumbihl R., Kampik D., Fauconnier A., Autenrieth I. B. Wortmannin blocks Yersinia invasin-triggered internalization, but not interleukin-8 production by epithelial cells. Med Microbiol Immunol. 1998 Jun;187(1):53–60. doi: 10.1007/s004300050074. [DOI] [PubMed] [Google Scholar]
- Schönwasser D. C., Marais R. M., Marshall C. J., Parker P. J. Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol Cell Biol. 1998 Feb;18(2):790–798. doi: 10.1128/mcb.18.2.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Segal R. A., Greenberg M. E. Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci. 1996;19:463–489. doi: 10.1146/annurev.ne.19.030196.002335. [DOI] [PubMed] [Google Scholar]
- Steele-Mortimer O., Knodler L. A., Marcus S. L., Scheid M. P., Goh B., Pfeifer C. G., Duronio V., Finlay B. B. Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J Biol Chem. 2000 Dec 1;275(48):37718–37724. doi: 10.1074/jbc.M008187200. [DOI] [PubMed] [Google Scholar]
- Tang P., Sutherland C. L., Gold M. R., Finlay B. B. Listeria monocytogenes invasion of epithelial cells requires the MEK-1/ERK-2 mitogen-activated protein kinase pathway. Infect Immun. 1998 Mar;66(3):1106–1112. doi: 10.1128/iai.66.3.1106-1112.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toker A., Newton A. C. Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J Biol Chem. 2000 Mar 24;275(12):8271–8274. doi: 10.1074/jbc.275.12.8271. [DOI] [PubMed] [Google Scholar]
- Tzivion G., Luo Z., Avruch J. A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature. 1998 Jul 2;394(6688):88–92. doi: 10.1038/27938. [DOI] [PubMed] [Google Scholar]
- Vitale G., Pellizzari R., Recchi C., Napolitani G., Mock M., Montecucco C. Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. Biochem Biophys Res Commun. 1998 Jul 30;248(3):706–711. doi: 10.1006/bbrc.1998.9040. [DOI] [PubMed] [Google Scholar]
- Wiggin Giselle R., Soloaga Ana, Foster Julia M., Murray-Tait Victoria, Cohen Philip, Arthur J. Simon C. MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol Cell Biol. 2002 Apr;22(8):2871–2881. doi: 10.1128/MCB.22.8.2871-2881.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada Masashi, Numakawa Tadahiro, Koshimizu Hisatsugu, Tanabe Keiko, Wada Kazuyo, Koizumi Shinichi, Hatanaka Hiroshi. Distinct usages of phospholipase C gamma and Shc in intracellular signaling stimulated by neurotrophins. Brain Res. 2002 Nov 15;955(1-2):183–190. doi: 10.1016/s0006-8993(02)03432-7. [DOI] [PubMed] [Google Scholar]
- Yavin E., Nathan A. Tetanus toxin receptors on nerve cells contain a trypsin-sensitive component. Eur J Biochem. 1986 Jan 15;154(2):403–407. doi: 10.1111/j.1432-1033.1986.tb09412.x. [DOI] [PubMed] [Google Scholar]
- York R. D., Molliver D. C., Grewal S. S., Stenberg P. E., McCleskey E. W., Stork P. J. Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol Cell Biol. 2000 Nov;20(21):8069–8083. doi: 10.1128/mcb.20.21.8069-8083.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmermann S., Moelling K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science. 1999 Nov 26;286(5445):1741–1744. doi: 10.1126/science.286.5445.1741. [DOI] [PubMed] [Google Scholar]