Abstract
The partial N-terminal amino acid sequence of the antimicrobial peptide reported in the present paper has been submitted to the TrEMBL database under the accession number P83338. A 6.7 kDa antimicrobial peptide was isolated from trout skin secretions using acid extraction followed by cation-exchange chromatography, (t)C(18) solid-phase extraction, and C(18) reversed-phase HPLC. The molecular mass of this peptide, which is tentatively named oncorhyncin III, is 6671 Da, as determined by matrix-assisted laser-desorption ionization MS. N-terminal amino acid sequencing revealed that the first 13 residues of oncorhyncin III are identical with those of the non-histone chromosomal protein H6 from rainbow trout. Hence these data combined with the MS results indicate that oncorhyncin III is likely to be a cleavage product of the non-histone chromosomal protein H6 (residues 1-66) and that it probably contains two methylated residues or one double methylation. The purified peptide exhibits potent antibacterial activity against both Gram-positive and Gram-negative bacteria, with minimal inhibitory concentrations in the submicromolar range. The peptide is sensitive to NaCl, and displays no haemolytic activity towards trout erythrocytes at concentrations below 1 microM. Scanning electron microscopy revealed that oncorhyncin III does not cause direct disruption of bacterial cells. Reconstitution of the peptide in planar lipid bilayers strongly disturbs the membranes, but does not induce the formation of stable ion channels. Taken together, these results support the hypothesis that oncorhyncin III plays a role in mucosal innate host defence.
Full Text
The Full Text of this article is available as a PDF (195.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander J. B. Precipitins in the serum of the Atlantic salmon. Dev Comp Immunol. 1980 Fall;4(4):641–651. doi: 10.1016/s0145-305x(80)80066-8. [DOI] [PubMed] [Google Scholar]
- Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bals R., Goldman M. J., Wilson J. M. Mouse beta-defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. Infect Immun. 1998 Mar;66(3):1225–1232. doi: 10.1128/iai.66.3.1225-1232.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bals R., Wang X., Meegalla R. L., Wattler S., Weiner D. J., Nehls M. C., Wilson J. M. Mouse beta-defensin 3 is an inducible antimicrobial peptide expressed in the epithelia of multiple organs. Infect Immun. 1999 Jul;67(7):3542–3547. doi: 10.1128/iai.67.7.3542-3547.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bevins C. L. Antimicrobial peptides as agents of mucosal immunity. Ciba Found Symp. 1994;186:250–269. doi: 10.1002/9780470514658.ch15. [DOI] [PubMed] [Google Scholar]
- Boman H. G. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol. 1995;13:61–92. doi: 10.1146/annurev.iy.13.040195.000425. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Brown E., Goodwin G. H. Comparison of the high-mobility-group chromosomal proteins in rainbow-trout (Salmo gairdnerii) liver and testis. Biochem J. 1983 Dec 1;215(3):531–538. doi: 10.1042/bj2150531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bustin M., Reeves R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol. 1996;54:35–100. doi: 10.1016/s0079-6603(08)60360-8. [DOI] [PubMed] [Google Scholar]
- Cho Ju Hyun, Park In Yup, Kim Hun Sik, Lee Won Taek, Kim Mi Sun, Kim Sun Chang. Cathepsin D produces antimicrobial peptide parasin I from histone H2A in the skin mucosa of fish. FASEB J. 2002 Jan 30;16(3):429–431. doi: 10.1096/fj.01-0736fje. [DOI] [PubMed] [Google Scholar]
- Cole A. M., Weis P., Diamond G. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J Biol Chem. 1997 May 2;272(18):12008–12013. doi: 10.1074/jbc.272.18.12008. [DOI] [PubMed] [Google Scholar]
- DeGrado W. F., Musso G. F., Lieber M., Kaiser E. T., Kézdy F. J. Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue. Biophys J. 1982 Jan;37(1):329–338. doi: 10.1016/S0006-3495(82)84681-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernandes Jorge M. O., Kemp Graham D., Molle M. Gerard, Smith Valerie J. Anti-microbial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss. Biochem J. 2002 Dec 1;368(Pt 2):611–620. doi: 10.1042/BJ20020980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernandes Jorge M. O., Smith Valerie J. A novel antimicrobial function for a ribosomal peptide from rainbow trout skin. Biochem Biophys Res Commun. 2002 Aug 9;296(1):167–171. doi: 10.1016/s0006-291x(02)00837-9. [DOI] [PubMed] [Google Scholar]
- Friedrich C., Scott M. G., Karunaratne N., Yan H., Hancock R. E. Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrob Agents Chemother. 1999 Jul;43(7):1542–1548. doi: 10.1128/aac.43.7.1542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frohm M., Gunne H., Bergman A. C., Agerberth B., Bergman T., Boman A., Lidén S., Jörnvall H., Boman H. G. Biochemical and antibacterial analysis of human wound and blister fluid. Eur J Biochem. 1996 Apr 1;237(1):86–92. doi: 10.1111/j.1432-1033.1996.0086n.x. [DOI] [PubMed] [Google Scholar]
- Hiemstra P. S., van den Barselaar M. T., Roest M., Nibbering P. H., van Furth R. Ubiquicidin, a novel murine microbicidal protein present in the cytosolic fraction of macrophages. J Leukoc Biol. 1999 Sep;66(3):423–428. doi: 10.1002/jlb.66.3.423. [DOI] [PubMed] [Google Scholar]
- Honda B. M., Dixon G. H., Candido E. P. Sites of in vivo histone methylation in developing trout testis. J Biol Chem. 1975 Nov 25;250(22):8681–8685. [PubMed] [Google Scholar]
- Kashima M. H1 histones contribute to candidacidal activities of human epidermal extract. J Dermatol. 1991 Dec;18(12):695–706. doi: 10.1111/j.1346-8138.1991.tb03160.x. [DOI] [PubMed] [Google Scholar]
- Kim H. S., Yoon H., Minn I., Park C. B., Lee W. T., Zasloff M., Kim S. C. Pepsin-mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I. J Immunol. 2000 Sep 15;165(6):3268–3274. doi: 10.4049/jimmunol.165.6.3268. [DOI] [PubMed] [Google Scholar]
- Kragol G., Lovas S., Varadi G., Condie B. A., Hoffmann R., Otvos L., Jr The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry. 2001 Mar 13;40(10):3016–3026. doi: 10.1021/bi002656a. [DOI] [PubMed] [Google Scholar]
- Landsman D., Bustin M. Chicken non-histone chromosomal protein HMG-17 cDNA sequence. Nucleic Acids Res. 1987 Aug 25;15(16):6750–6750. doi: 10.1093/nar/15.16.6750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landsman D., Soares N., Gonzalez F. J., Bustin M. Chromosomal protein HMG-17. Complete human cDNA sequence and evidence for a multigene family. J Biol Chem. 1986 Jun 5;261(16):7479–7484. [PubMed] [Google Scholar]
- Landsman D., Srikantha T., Westermann R., Bustin M. Chromosomal protein HMG-14. Complete human cDNA sequence and evidence for a multigene family. J Biol Chem. 1986 Dec 5;261(34):16082–16086. [PubMed] [Google Scholar]
- Lehrer R. I., Rosenman M., Harwig S. S., Jackson R., Eisenhauer P. Ultrasensitive assays for endogenous antimicrobial polypeptides. J Immunol Methods. 1991 Mar 21;137(2):167–173. doi: 10.1016/0022-1759(91)90021-7. [DOI] [PubMed] [Google Scholar]
- Ludtke S. J., He K., Heller W. T., Harroun T. A., Yang L., Huang H. W. Membrane pores induced by magainin. Biochemistry. 1996 Oct 29;35(43):13723–13728. doi: 10.1021/bi9620621. [DOI] [PubMed] [Google Scholar]
- Matsuzaki K., Yoneyama S., Fujii N., Miyajima K., Yamada K., Kirino Y., Anzai K. Membrane permeabilization mechanisms of a cyclic antimicrobial peptide, tachyplesin I, and its linear analog. Biochemistry. 1997 Aug 12;36(32):9799–9806. doi: 10.1021/bi970588v. [DOI] [PubMed] [Google Scholar]
- Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park C. B., Kim H. S., Kim S. C. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun. 1998 Mar 6;244(1):253–257. doi: 10.1006/bbrc.1998.8159. [DOI] [PubMed] [Google Scholar]
- Park I. Y., Park C. B., Kim M. S., Kim S. C. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett. 1998 Oct 23;437(3):258–262. doi: 10.1016/s0014-5793(98)01238-1. [DOI] [PubMed] [Google Scholar]
- Patrzykat A., Zhang L., Mendoza V., Iwama G. K., Hancock R. E. Synergy of histone-derived peptides of coho salmon with lysozyme and flounder pleurocidin. Antimicrob Agents Chemother. 2001 May;45(5):1337–1342. doi: 10.1128/AAC.45.5.1337-1342.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Relf J. M., Chisholm J. R., Kemp G. D., Smith V. J. Purification and characterization of a cysteine-rich 11.5-kDa antibacterial protein from the granular haemocytes of the shore crab, Carcinus maenas. Eur J Biochem. 1999 Sep;264(2):350–357. doi: 10.1046/j.1432-1327.1999.00607.x. [DOI] [PubMed] [Google Scholar]
- Richards R. C., O'Neil D. B., Thibault P., Ewart K. V. Histone H1: an antimicrobial protein of Atlantic salmon (Salmo salar). Biochem Biophys Res Commun. 2001 Jun 15;284(3):549–555. doi: 10.1006/bbrc.2001.5020. [DOI] [PubMed] [Google Scholar]
- Robinette D., Wada S., Arroll T., Levy M. G., Miller W. L., Noga E. J. Antimicrobial activity in the skin of the channel catfish Ictalurus punctatus: characterization of broad-spectrum histone-like antimicrobial proteins. Cell Mol Life Sci. 1998 May;54(5):467–475. doi: 10.1007/s000180050175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):55–70. doi: 10.1016/s0005-2736(99)00200-x. [DOI] [PubMed] [Google Scholar]
- Simmaco M., Mangoni M. L., Boman A., Barra D., Boman H. G. Experimental infections of Rana esculenta with Aeromonas hydrophila: a molecular mechanism for the control of the normal flora. Scand J Immunol. 1998 Oct;48(4):357–363. doi: 10.1046/j.1365-3083.1998.00407.x. [DOI] [PubMed] [Google Scholar]
- Smith V. J., Fernandes J. M., Jones S. J., Kemp G. D., Tatner M. F. Antibacterial proteins in rainbow trout, Oncorhynchus mykiss. Fish Shellfish Immunol. 2000 Apr;10(3):243–260. doi: 10.1006/fsim.1999.0254. [DOI] [PubMed] [Google Scholar]
- Srikantha T., Landsman D., Bustin M. Cloning of the chicken chromosomal protein HMG-14 cDNA reveals a unique protein with a conserved DNA binding domain. J Biol Chem. 1988 Sep 25;263(27):13500–13503. [PubMed] [Google Scholar]
- Subbalakshmi C., Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett. 1998 Mar 1;160(1):91–96. doi: 10.1111/j.1574-6968.1998.tb12896.x. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner J., Cho Y., Dinh N. N., Waring A. J., Lehrer R. I. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother. 1998 Sep;42(9):2206–2214. doi: 10.1128/aac.42.9.2206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watson D. C., Wong N. C., Dixon G. H. The complete amino-acid sequence of a trout-testis non-histone protein, H6, localized in a subset of nucleosomes and its similarity to calf-thymus non-histone proteins HMG-14 and HMG-17. Eur J Biochem. 1979 Mar 15;95(1):193–202. doi: 10.1111/j.1432-1033.1979.tb12953.x. [DOI] [PubMed] [Google Scholar]
- Westerhoff H. V., Juretić D., Hendler R. W., Zasloff M. Magainins and the disruption of membrane-linked free-energy transduction. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6597–6601. doi: 10.1073/pnas.86.17.6597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang L., Weiss T. M., Lehrer R. I., Huang H. W. Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys J. 2000 Oct;79(4):2002–2009. doi: 10.1016/S0006-3495(00)76448-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zasloff Michael. Antimicrobial peptides of multicellular organisms. Nature. 2002 Jan 24;415(6870):389–395. doi: 10.1038/415389a. [DOI] [PubMed] [Google Scholar]