Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Jul 15;373(Pt 2):559–569. doi: 10.1042/BJ20030415

Biochemical and genetic characterization of a murine class Kappa glutathione S-transferase.

Ian R Jowsey 1, Rachel E Thomson 1, Terry C Orton 1, Clifford R Elcombe 1, John D Hayes 1
PMCID: PMC1223515  PMID: 12720545

Abstract

The class Kappa family of glutathione S-transferases (GSTs) currently comprises a single rat subunit (rGSTK1), originally isolated from the matrix of liver mitochondria [Harris, Meyer, Coles and Ketterer (1991) Biochem. J. 278, 137-141; Pemble, Wardle and Taylor (1996) Biochem. J. 319, 749-754]. In the present study, an expressed sequence tag (EST) clone has been identified which encodes a mouse class Kappa GST (designated mGSTK1). The EST clone contains an open reading frame of 678 bp, encoding a protein composed of 226 amino acid residues with 86% sequence identity with the rGSTK1 polypeptide. The mGSTK1 and rGSTK1 proteins have been heterologously expressed in Escherichia coli and purified by affinity chromatography. Both mouse and rat transferases were found to exhibit GSH-conjugating and GSH-peroxidase activities towards model substrates. Analysis of expression levels in a range of mouse and rat tissues revealed that the mRNA encoding these enzymes is expressed predominantly in heart, kidney, liver and skeletal muscle. Although other soluble GST isoenzymes are believed to reside primarily within the cytosol, subcellular fractionation of mouse liver demonstrates that this novel murine class Kappa GST is associated with mitochondrial fractions. Through the use of bioinformatics, the genes encoding the mouse and rat class Kappa GSTs have been identified. Both genes comprise eight exons, the protein coding region of which spans approx. 4.3 kb and 4.1 kb of DNA for mGSTK1 and rGSTK1 respectively. This conservation in primary structure, catalytic properties, tissue-specific expression, subcellular localization and gene structure between mouse and rat class Kappa GSTs indicates that they perform similar physiological functions. Furthermore, the association of these enzymes with mitochondrial fractions is consistent with them performing a specific conserved biological role within this organelle.

Full Text

The Full Text of this article is available as a PDF (307.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addya S., Mullick J., Fang J. K., Avadhani N. G. Purification and characterization of a hepatic mitochondrial glutathione S-transferase exhibiting immunochemical relationship to the alpha-class of cytosolic isoenzymes. Arch Biochem Biophys. 1994 Apr;310(1):82–88. doi: 10.1006/abbi.1994.1143. [DOI] [PubMed] [Google Scholar]
  2. Adler V., Yin Z., Fuchs S. Y., Benezra M., Rosario L., Tew K. D., Pincus M. R., Sardana M., Henderson C. J., Wolf C. R. Regulation of JNK signaling by GSTp. EMBO J. 1999 Mar 1;18(5):1321–1334. doi: 10.1093/emboj/18.5.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhagwat S. V., Vijayasarathy C., Raza H., Mullick J., Avadhani N. G. Preferential effects of nicotine and 4-(N-methyl-N-nitrosamine)-1-(3-pyridyl)-1-butanone on mitochondrial glutathione S-transferase A4-4 induction and increased oxidative stress in the rat brain. Biochem Pharmacol. 1998 Oct 1;56(7):831–839. doi: 10.1016/s0006-2952(98)00228-7. [DOI] [PubMed] [Google Scholar]
  4. Board P. G., Baker R. T., Chelvanayagam G., Jermiin L. S. Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem J. 1997 Dec 15;328(Pt 3):929–935. doi: 10.1042/bj3280929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Board P. G., Coggan M., Chelvanayagam G., Easteal S., Jermiin L. S., Schulte G. K., Danley D. E., Hoth L. R., Griffor M. C., Kamath A. V. Identification, characterization, and crystal structure of the Omega class glutathione transferases. J Biol Chem. 2000 Aug 11;275(32):24798–24806. doi: 10.1074/jbc.M001706200. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Cho S. G., Lee Y. H., Park H. S., Ryoo K., Kang K. W., Park J., Eom S. J., Kim M. J., Chang T. S., Choi S. Y. Glutathione S-transferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J Biol Chem. 2001 Jan 18;276(16):12749–12755. doi: 10.1074/jbc.M005561200. [DOI] [PubMed] [Google Scholar]
  8. Coggan Marjorie, Flanagan Jack U., Parker Michael W., Vichai Vanicha, Pearson William R., Board Philip G. Identification and characterization of GSTT3, a third murine Theta class glutathione transferase. Biochem J. 2002 Aug 15;366(Pt 1):323–332. doi: 10.1042/BJ20011878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ellis E. M., Judah D. J., Neal G. E., O'Connor T., Hayes J. D. Regulation of carbonyl-reducing enzymes in rat liver by chemoprotectors. Cancer Res. 1996 Jun 15;56(12):2758–2766. [PubMed] [Google Scholar]
  10. Fernández-Cañn José Manuel, Baetscher Manfred W., Finegold Milton, Burlingame Terry, Gibson K. Michael, Grompe Markus. Maleylacetoacetate isomerase (MAAI/GSTZ)-deficient mice reveal a glutathione-dependent nonenzymatic bypass in tyrosine catabolism. Mol Cell Biol. 2002 Jul;22(13):4943–4951. doi: 10.1128/MCB.22.13.4943-4951.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harris J. M., Meyer D. J., Coles B., Ketterer B. A novel glutathione transferase (13-13) isolated from the matrix of rat liver mitochondria having structural similarity to class theta enzymes. Biochem J. 1991 Aug 15;278(Pt 1):137–141. doi: 10.1042/bj2780137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hayes J. D., Mantle T. J. Use of immuno-blot techniques to discriminate between the glutathione S-transferase Yf, Yk, Ya, Yn/Yb and Yc subunits and to study their distribution in extrahepatic tissues. Evidence for three immunochemically distinct groups of transferase in the rat. Biochem J. 1986 Feb 1;233(3):779–788. doi: 10.1042/bj2330779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hayes J. D., McLellan L. I. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res. 1999 Oct;31(4):273–300. doi: 10.1080/10715769900300851. [DOI] [PubMed] [Google Scholar]
  14. Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
  15. Jakobsson P. J., Morgenstern R., Mancini J., Ford-Hutchinson A., Persson B. Common structural features of MAPEG -- a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Sci. 1999 Mar;8(3):689–692. doi: 10.1110/ps.8.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jakobsson P. J., Morgenstern R., Mancini J., Ford-Hutchinson A., Persson B. Membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG). A widespread protein superfamily. Am J Respir Crit Care Med. 2000 Feb;161(2 Pt 2):S20–S24. doi: 10.1164/ajrccm.161.supplement_1.ltta-5. [DOI] [PubMed] [Google Scholar]
  17. Jowsey I. R., Thomson A. M., Flanagan J. U., Murdock P. R., Moore G. B., Meyer D. J., Murphy G. J., Smith S. A., Hayes J. D. Mammalian class Sigma glutathione S-transferases: catalytic properties and tissue-specific expression of human and rat GSH-dependent prostaglandin D2 synthases. Biochem J. 2001 Nov 1;359(Pt 3):507–516. doi: 10.1042/0264-6021:3590507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kanaoka Y., Ago H., Inagaki E., Nanayama T., Miyano M., Kikuno R., Fujii Y., Eguchi N., Toh H., Urade Y. Cloning and crystal structure of hematopoietic prostaglandin D synthase. Cell. 1997 Sep 19;90(6):1085–1095. doi: 10.1016/s0092-8674(00)80374-8. [DOI] [PubMed] [Google Scholar]
  19. Kanaoka Y., Fujimori K., Kikuno R., Sakaguchi Y., Urade Y., Hayaishi O. Structure and chromosomal localization of human and mouse genes for hematopoietic prostaglandin D synthase. Conservation of the ancestral genomic structure of sigma-class glutathione S-transferase. Eur J Biochem. 2000 Jun;267(11):3315–3322. doi: 10.1046/j.1432-1327.2000.01362.x. [DOI] [PubMed] [Google Scholar]
  20. Karolchik D., Baertsch R., Diekhans M., Furey T. S., Hinrichs A., Lu Y. T., Roskin K. M., Schwartz M., Sugnet C. W., Thomas D. J. The UCSC Genome Browser Database. Nucleic Acids Res. 2003 Jan 1;31(1):51–54. doi: 10.1093/nar/gkg129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kodym R., Calkins P., Story M. The cloning and characterization of a new stress response protein. A mammalian member of a family of theta class glutathione s-transferase-like proteins. J Biol Chem. 1999 Feb 19;274(8):5131–5137. doi: 10.1074/jbc.274.8.5131. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lennon G., Auffray C., Polymeropoulos M., Soares M. B. The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics. 1996 Apr 1;33(1):151–152. doi: 10.1006/geno.1996.0177. [DOI] [PubMed] [Google Scholar]
  24. McLellan L. I., Hayes J. D. Differential induction of class alpha glutathione S-transferases in mouse liver by the anticarcinogenic antioxidant butylated hydroxyanisole. Purification and characterization of glutathione S-transferase Ya1Ya1. Biochem J. 1989 Oct 15;263(2):393–402. doi: 10.1042/bj2630393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Meyer D. J., Thomas M. Characterization of rat spleen prostaglandin H D-isomerase as a sigma-class GSH transferase. Biochem J. 1995 Nov 1;311(Pt 3):739–742. doi: 10.1042/bj3110739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morgenstern R., Lundqvist G., Andersson G., Balk L., DePierre J. W. The distribution of microsomal glutathione transferase among different organelles, different organs, and different organisms. Biochem Pharmacol. 1984 Nov 15;33(22):3609–3614. doi: 10.1016/0006-2952(84)90145-x. [DOI] [PubMed] [Google Scholar]
  27. Neupert W. Protein import into mitochondria. Annu Rev Biochem. 1997;66:863–917. doi: 10.1146/annurev.biochem.66.1.863. [DOI] [PubMed] [Google Scholar]
  28. Pemble S. E., Wardle A. F., Taylor J. B. Glutathione S-transferase class Kappa: characterization by the cloning of rat mitochondrial GST and identification of a human homologue. Biochem J. 1996 Nov 1;319(Pt 3):749–754. doi: 10.1042/bj3190749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Raza Haider, Robin Marie-Anne, Fang Ji-Kang, Avadhani Narayan G. Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress. Biochem J. 2002 Aug 15;366(Pt 1):45–55. doi: 10.1042/BJ20020533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ryle C. M., Mantle T. J. Studies on the glutathione S-transferase activity associated with rat liver mitochondria. Biochem J. 1984 Sep 1;222(2):553–556. doi: 10.1042/bj2220553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sheehan D., Meade G., Foley V. M., Dowd C. A. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J. 2001 Nov 15;360(Pt 1):1–16. doi: 10.1042/0264-6021:3600001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Thomson A. M., Meyer D. J., Hayes J. D. Sequence, catalytic properties and expression of chicken glutathione-dependent prostaglandin D2 synthase, a novel class Sigma glutathione S-transferase. Biochem J. 1998 Jul 15;333(Pt 2):317–325. doi: 10.1042/bj3330317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Whitbread Astrid K., Tetlow Natasha, Eyre Helen J., Sutherland Grant R., Board Philip G. Characterization of the human Omega class glutathione transferase genes and associated polymorphisms. Pharmacogenetics. 2003 Mar;13(3):131–144. doi: 10.1097/00008571-200303000-00003. [DOI] [PubMed] [Google Scholar]
  34. Whittington A., Vichai V., Webb G., Baker R., Pearson W., Board P. Gene structure, expression and chromosomal localization of murine theta class glutathione transferase mGSTT1-1. Biochem J. 1999 Jan 1;337(Pt 1):141–151. [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES