Abstract
We have investigated the effects of inhibiting sphingomyelin (SM) biosynthesis on cellular diacylglycerol (DAG) content and protein kinase C (PKC) activation during growth initiation in Madin-Darby canine kidney cells. We utilized beta-chloroalanine (BCA) to inactivate serine C -palmitoyltransferase, the first enzyme in the sphingolipid biosynthesis pathway. This inactivation prevented growth, but did not affect viability. When the inhibitor was replaced with fresh culture medium, the cells continued their proliferation in a normal way. BCA (2 mM) inhibited [(32)P]P(i), [(3)H]palmitic acid and [ methyl -(3)H]choline incorporation into SM, but did not influence the synthesis of other major phospholipids. SM synthesis and DAG generation were decreased by 51% and 47.6% respectively. Particulate PKC activity was not observed in cells incubated with BCA, in contrast with a 5-fold increase in control cells. BCA inhibited 75% of the [(3)H]thymidine incorporation, and the cells were arrested before the S phase of the cell cycle. Moreover, exogenous D-erythrosphingosine restored SM synthesis, DAG generation and cell proliferation. These data indicate that the contribution of DAG generated during SM synthesis plays an important role in PKC activation and cell proliferation.
Full Text
The Full Text of this article is available as a PDF (141.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Cardenas M., Fabila Y. V., Yum S., Cerbon J., Böhmer F. D., Wetzker R., Fujisawa T., Bosch T. C., Salgado L. M. Selective protein kinase inhibitors block head-specific differentiation in hydra. Cell Signal. 2000 Oct;12(9-10):649–658. doi: 10.1016/s0898-6568(00)00115-7. [DOI] [PubMed] [Google Scholar]
- Cuvillier O., Pirianov G., Kleuser B., Vanek P. G., Coso O. A., Gutkind S., Spiegel S. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature. 1996 Jun 27;381(6585):800–803. doi: 10.1038/381800a0. [DOI] [PubMed] [Google Scholar]
- Dean N., McKay R., Miraglia L., Howard R., Cooper S., Giddings J., Nicklin P., Meister L., Ziel R., Geiger T. Inhibition of growth of human tumor cell lines in nude mice by an antisense of oligonucleotide inhibitor of protein kinase C-alpha expression. Cancer Res. 1996 Aug 1;56(15):3499–3507. [PubMed] [Google Scholar]
- Exton J. H. Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta. 1994 Apr 14;1212(1):26–42. doi: 10.1016/0005-2760(94)90186-4. [DOI] [PubMed] [Google Scholar]
- Godson C., Masliah E., Balboa M. A., Ellisman M. H., Insel P. A. Isoform-specific redistribution of protein kinase C in living cells. Biochim Biophys Acta. 1996 Aug 21;1313(1):63–71. doi: 10.1016/0167-4889(96)00050-x. [DOI] [PubMed] [Google Scholar]
- Hannun Y. A., Luberto C., Argraves K. M. Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry. 2001 Apr 24;40(16):4893–4903. doi: 10.1021/bi002836k. [DOI] [PubMed] [Google Scholar]
- Jackowski S. Coordination of membrane phospholipid synthesis with the cell cycle. J Biol Chem. 1994 Feb 4;269(5):3858–3867. [PubMed] [Google Scholar]
- Luberto C., Hannun Y. A. Sphingomyelin synthase, a potential regulator of intracellular levels of ceramide and diacylglycerol during SV40 transformation. Does sphingomyelin synthase account for the putative phosphatidylcholine-specific phospholipase C? J Biol Chem. 1998 Jun 5;273(23):14550–14559. doi: 10.1074/jbc.273.23.14550. [DOI] [PubMed] [Google Scholar]
- Mathias S., Peña L. A., Kolesnick R. N. Signal transduction of stress via ceramide. Biochem J. 1998 Nov 1;335(Pt 3):465–480. doi: 10.1042/bj3350465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medlock K. A., Merrill A. H., Jr Inhibition of serine palmitoyltransferase in vitro and long-chain base biosynthesis in intact Chinese hamster ovary cells by beta-chloroalanine. Biochemistry. 1988 Sep 6;27(18):7079–7084. doi: 10.1021/bi00418a061. [DOI] [PubMed] [Google Scholar]
- Merrill A. H., Jr Cell regulation by sphingosine and more complex sphingolipids. J Bioenerg Biomembr. 1991 Feb;23(1):83–104. doi: 10.1007/BF00768840. [DOI] [PubMed] [Google Scholar]
- Merrill A. H., Jr, Wang E., Mullins R. E., Jamison W. C., Nimkar S., Liotta D. C. Quantitation of free sphingosine in liver by high-performance liquid chromatography. Anal Biochem. 1988 Jun;171(2):373–381. doi: 10.1016/0003-2697(88)90500-3. [DOI] [PubMed] [Google Scholar]
- Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
- Ohanian J., Ohanian V. Sphingolipids in mammalian cell signalling. Cell Mol Life Sci. 2001 Dec;58(14):2053–2068. doi: 10.1007/PL00000836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pappu A. S., Hauser G. Propranolol-induced inhibition of rat brain cytoplasmic phosphatidate phosphohydrolase. Neurochem Res. 1983 Dec;8(12):1565–1575. doi: 10.1007/BF00964158. [DOI] [PubMed] [Google Scholar]
- Perry D. K., Hannun Y. A. The role of ceramide in cell signaling. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):233–243. doi: 10.1016/s0005-2760(98)00145-3. [DOI] [PubMed] [Google Scholar]
- Riboni L., Viani P., Bassi R., Giussani P., Tettamanti G. Basic fibroblast growth factor-induced proliferation of primary astrocytes. evidence for the involvement of sphingomyelin biosynthesis. J Biol Chem. 2001 Jan 22;276(16):12797–12804. doi: 10.1074/jbc.M011570200. [DOI] [PubMed] [Google Scholar]
- Shayman J. A. Sphingolipids: their role in intracellular signaling and renal growth. J Am Soc Nephrol. 1996 Feb;7(2):171–182. doi: 10.1681/ASN.V72171. [DOI] [PubMed] [Google Scholar]
- Smith E. R., Merrill A. H., Jr Differential roles of de novo sphingolipid biosynthesis and turnover in the "burst" of free sphingosine and sphinganine, and their 1-phosphates and N-acyl-derivatives, that occurs upon changing the medium of cells in culture. J Biol Chem. 1995 Aug 11;270(32):18749–18758. doi: 10.1074/jbc.270.32.18749. [DOI] [PubMed] [Google Scholar]
- Spiegel S., Foster D., Kolesnick R. Signal transduction through lipid second messengers. Curr Opin Cell Biol. 1996 Apr;8(2):159–167. doi: 10.1016/s0955-0674(96)80061-5. [DOI] [PubMed] [Google Scholar]
- Spiegel S., Merrill A. H., Jr Sphingolipid metabolism and cell growth regulation. FASEB J. 1996 Oct;10(12):1388–1397. doi: 10.1096/fasebj.10.12.8903509. [DOI] [PubMed] [Google Scholar]
- Van Veldhoven P. P., Bell R. M. Effect of harvesting methods, growth conditions and growth phase on diacylglycerol levels in cultured human adherent cells. Biochim Biophys Acta. 1988 Mar 25;959(2):185–196. doi: 10.1016/0005-2760(88)90030-6. [DOI] [PubMed] [Google Scholar]
- Wakelam M. J. Diacylglycerol--when is it an intracellular messenger? Biochim Biophys Acta. 1998 Dec 8;1436(1-2):117–126. doi: 10.1016/s0005-2760(98)00123-4. [DOI] [PubMed] [Google Scholar]
- Yasuda I., Kishimoto A., Tanaka S., Tominaga M., Sakurai A., Nishizuka Y. A synthetic peptide substrate for selective assay of protein kinase C. Biochem Biophys Res Commun. 1990 Feb 14;166(3):1220–1227. doi: 10.1016/0006-291x(90)90996-z. [DOI] [PubMed] [Google Scholar]
- Zhou W., Takuwa N., Kumada M., Takuwa Y. Protein kinase C-mediated bidirectional regulation of DNA synthesis, RB protein phosphorylation, and cyclin-dependent kinases in human vascular endothelial cells. J Biol Chem. 1993 Nov 5;268(31):23041–23048. [PubMed] [Google Scholar]
- van Helvoort A., van't Hof W., Ritsema T., Sandra A., van Meer G. Conversion of diacylglycerol to phosphatidylcholine on the basolateral surface of epithelial (Madin-Darby canine kidney) cells. Evidence for the reverse action of a sphingomyelin synthase. J Biol Chem. 1994 Jan 21;269(3):1763–1769. [PubMed] [Google Scholar]