Abstract
A variant form of an Anopheles dirus glutathione S-transferase (GST), designated AdGSTD4-4, possesses a single amino acid change of leucine to arginine (Leu-103-Arg). Although residue 103 is outside of the active site, it has major effects on enzymic properties. To investigate these structural effects, site-directed mutagenesis was used to generate mutants by changing the non-polar leucine to alanine, glutamate, isoleucine, methionine, asparagine, or tyrosine. All of the recombinant GSTs showed approximately the same expression level at 25 degrees C. Several of the mutants lacked glutathione (GSH)-binding affinity but were purified by S-hexyl-GSH-based affinity chromatography. However the protein yields (70-fold lower), as well as the GST activity (100-fold lower), of Leu-103-Tyr and Leu-103-Arg purifications were surprisingly low and precluded the performance of kinetic experiments. Size-exclusion chromatography showed that both GSTs Leu-103-Tyr and Leu-103-Arg formed dimers. Using 1-chloro-2,4-dinitrobenzene (CDNB) and GSH substrates to determine kinetic constants it was demonstrated that the other Leu-103 mutants possessed a greater K (m) towards GSH and a differing K (m) towards CDNB. The V (max) ranged from 44.7 to 87.0 micromol/min per mg (wild-type, 44.7 micromol/min per mg). Substrate-specificity studies showed different selectivity properties for each mutant. The structural residue Leu-103 affects the active site through H-bond and van-der-Waal contacts with six active-site residues in the GSH binding site. Changes in this interior core residue appear to disrupt internal packing, which affects active-site residues as well as residues at the subunit-subunit interface. Finally, the data suggest that Leu-103 is noteworthy as a sensitive residue in the GST structure that modulates enzyme activity as well as stability.
Full Text
The Full Text of this article is available as a PDF (219.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allocati N., Casalone E., Masulli M., Polekhina G., Rossjohn J., Parker M. W., Di Ilio C. Evaluation of the role of two conserved active-site residues in beta class glutathione S-transferases. Biochem J. 2000 Oct 15;351(Pt 2):341–346. [PMC free article] [PubMed] [Google Scholar]
- Armstrong R. N. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol. 1997 Jan;10(1):2–18. doi: 10.1021/tx960072x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Chern M. K., Wu T. C., Hsieh C. H., Chou C. C., Liu L. F., Kuan I. C., Yeh Y. H., Hsiao C. D., Tam M. F. Tyr115, gln165 and trp209 contribute to the 1, 2-epoxy-3-(p-nitrophenoxy)propane-conjugating activity of glutathione S-transferase cGSTM1-1. J Mol Biol. 2000 Jul 28;300(5):1257–1269. doi: 10.1006/jmbi.2000.3904. [DOI] [PubMed] [Google Scholar]
- Cocco R., Stenberg G., Dragani B., Rossi Principe D., Paludi D., Mannervik B., Aceto A. The folding and stability of human alpha class glutathione transferase A1-1 depend on distinct roles of a conserved N-capping box and hydrophobic staple motif. J Biol Chem. 2001 Jun 22;276(34):32177–32183. doi: 10.1074/jbc.M104057200. [DOI] [PubMed] [Google Scholar]
- Dragani B., Stenberg G., Melino S., Petruzzelli R., Mannervik B., Aceto A. The conserved N-capping box in the hydrophobic core of glutathione S-transferase P1-1 is essential for refolding. Identification of a buried and conserved hydrogen bond important for protein stability. J Biol Chem. 1997 Oct 10;272(41):25518–25523. doi: 10.1074/jbc.272.41.25518. [DOI] [PubMed] [Google Scholar]
- Gustafsson A., Etahadieh M., Jemth P., Mannervik B. The C-terminal region of human glutathione transferase A1-1 affects the rate of glutathione binding and the ionization of the active-site Tyr9. Biochemistry. 1999 Dec 7;38(49):16268–16275. doi: 10.1021/bi991482y. [DOI] [PubMed] [Google Scholar]
- Jemth P., Mannervik B. Active site serine promotes stabilization of the reactive glutathione thiolate in rat glutathione transferase T2-2. Evidence against proposed sulfatase activity of the corresponding human enzyme. J Biol Chem. 2000 Mar 24;275(12):8618–8624. doi: 10.1074/jbc.275.12.8618. [DOI] [PubMed] [Google Scholar]
- Jirajaroenrat K., Pongjaroenkit S., Krittanai C., Prapanthadara L., Ketterman A. J. Heterologous expression and characterization of alternatively spliced glutathione S-transferases from a single Anopheles gene. Insect Biochem Mol Biol. 2001 Jul 26;31(9):867–875. doi: 10.1016/s0965-1748(01)00032-7. [DOI] [PubMed] [Google Scholar]
- Johansson A. S., Stenberg G., Widersten M., Mannervik B. Structure-activity relationships and thermal stability of human glutathione transferase P1-1 governed by the H-site residue 105. J Mol Biol. 1998 May 8;278(3):687–698. doi: 10.1006/jmbi.1998.1708. [DOI] [PubMed] [Google Scholar]
- Ketterman A. J., Prommeenate P., Boonchauy C., Chanama U., Leetachewa S., Promtet N., Prapanthadara L. Single amino acid changes outside the active site significantly affect activity of glutathione S-transferases. Insect Biochem Mol Biol. 2001 Jan;31(1):65–74. doi: 10.1016/s0965-1748(00)00106-5. [DOI] [PubMed] [Google Scholar]
- Kong Geoffrey K-W, Polekhina Galina, McKinstry William J., Parker Michael W., Dragani Beatrice, Aceto Antonio, Paludi Domenico, Principe Daniela Rossi, Mannervik Bengt, Stenberg Gun. Contribution of glycine 146 to a conserved folding module affecting stability and refolding of human glutathione transferase p1-1. J Biol Chem. 2002 Oct 31;278(2):1291–1302. doi: 10.1074/jbc.M209581200. [DOI] [PubMed] [Google Scholar]
- Labrou N. E., Mello L. V., Clonis Y. D. Functional and structural roles of the glutathione-binding residues in maize (Zea mays) glutathione S-transferase I. Biochem J. 2001 Aug 15;358(Pt 1):101–110. doi: 10.1042/0264-6021:3580101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mannervik B., Danielson U. H. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337. doi: 10.3109/10409238809088226. [DOI] [PubMed] [Google Scholar]
- Manoharan T. H., Gulick A. M., Puchalski R. B., Servais A. L., Fahl W. E. Structural studies on human glutathione S-transferase pi. Substitution mutations to determine amino acids necessary for binding glutathione. J Biol Chem. 1992 Sep 15;267(26):18940–18945. [PubMed] [Google Scholar]
- Nieslanik B. S., Atkins W. M. The catalytic Tyr-9 of glutathione S-transferase A1-1 controls the dynamics of the C terminus. J Biol Chem. 2000 Jun 9;275(23):17447–17451. doi: 10.1074/jbc.M002083200. [DOI] [PubMed] [Google Scholar]
- Oakley A. J., Harnnoi T., Udomsinprasert R., Jirajaroenrat K., Ketterman A. J., Wilce M. C. The crystal structures of glutathione S-transferases isozymes 1-3 and 1-4 from Anopheles dirus species B. Protein Sci. 2001 Nov;10(11):2176–2185. doi: 10.1110/ps.ps.21201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oakley A. J., Jirajaroenrat K., Harnnoi T., Ketterman A. J., Wilce M. C. Crystallization of two glutathione S-transferases from an unusual gene family. Acta Crystallogr D Biol Crystallogr. 2001 May 25;57(Pt 6):870–872. doi: 10.1107/s0907444901004929. [DOI] [PubMed] [Google Scholar]
- Pongjaroenkit S., Jirajaroenrat K., Boonchauy C., Chanama U., Leetachewa S., Prapanthadara L., Ketterman A. J. Genomic organization and putative promoters of highly conserved glutathione S-transferases originating by alternative splicing in Anopheles dirus. Insect Biochem Mol Biol. 2001 Jan;31(1):75–85. doi: 10.1016/s0965-1748(00)00107-7. [DOI] [PubMed] [Google Scholar]
- Prapanthadara L. A., Koottathep S., Promtet N., Hemingway J., Ketterman A. J. Purification and characterization of a major glutathione S-transferase from the mosquito Anopheles dirus (species B). Insect Biochem Mol Biol. 1996 Mar;26(3):277–285. doi: 10.1016/0965-1748(95)00090-9. [DOI] [PubMed] [Google Scholar]
- Ranson H., Collins F., Hemingway J. The role of alternative mRNA splicing in generating heterogeneity within the Anopheles gambiae class I glutathione S-transferase family. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14284–14289. doi: 10.1073/pnas.95.24.14284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ranson H., Prapanthadara L. a., Hemingway J. Cloning and characterization of two glutathione S-transferases from a DDT-resistant strain of Anopheles gambiae. Biochem J. 1997 May 15;324(Pt 1):97–102. doi: 10.1042/bj3240097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rossjohn J., McKinstry W. J., Oakley A. J., Parker M. W., Stenberg G., Mannervik B., Dragani B., Cocco R., Aceto A. Structures of thermolabile mutants of human glutathione transferase P1-1. J Mol Biol. 2000 Sep 15;302(2):295–302. doi: 10.1006/jmbi.2000.4054. [DOI] [PubMed] [Google Scholar]
- Sayed Y., Wallace L. A., Dirr H. W. The hydrophobic lock-and-key intersubunit motif of glutathione transferase A1-1: implications for catalysis, ligandin function and stability. FEBS Lett. 2000 Jan 14;465(2-3):169–172. doi: 10.1016/s0014-5793(99)01747-0. [DOI] [PubMed] [Google Scholar]
- Stenberg G., Abdalla A. M., Mannervik B. Tyrosine 50 at the subunit interface of dimeric human glutathione transferase P1-1 is a structural key residue for modulating protein stability and catalytic function. Biochem Biophys Res Commun. 2000 Apr 29;271(1):59–63. doi: 10.1006/bbrc.2000.2579. [DOI] [PubMed] [Google Scholar]
- Stenberg G., Board P. G., Carlberg I., Mannervik B. Effects of directed mutagenesis on conserved arginine residues in a human Class Alpha glutathione transferase. Biochem J. 1991 Mar 1;274(Pt 2):549–555. doi: 10.1042/bj2740549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stenberg G., Dragani B., Cocco R., Mannervik B., Aceto A. A conserved "hydrophobic staple motif" plays a crucial role in the refolding of human glutathione transferase P1-1. J Biol Chem. 2000 Apr 7;275(14):10421–10428. doi: 10.1074/jbc.275.14.10421. [DOI] [PubMed] [Google Scholar]
- Tan K. L., Chelvanayagam G., Parker M. W., Board P. G. Mutagenesis of the active site of the human Theta-class glutathione transferase GSTT2-2: catalysis with different substrates involves different residues. Biochem J. 1996 Oct 1;319(Pt 1):315–321. doi: 10.1042/bj3190315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilce M. C., Parker M. W. Structure and function of glutathione S-transferases. Biochim Biophys Acta. 1994 Mar 16;1205(1):1–18. doi: 10.1016/0167-4838(94)90086-8. [DOI] [PubMed] [Google Scholar]