Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 1;373(Pt 3):681–688. doi: 10.1042/BJ20030269

Low tetrahydrobiopterin biosynthetic capacity of human monocytes is caused by exon skipping in 6-pyruvoyl tetrahydropterin synthase.

Karin L Leitner 1, Martina Meyer 1, Walter Leimbacher 1, Anja Peterbauer 1, Susanne Hofer 1, Christine Heufler 1, Angelika Müller 1, Regine Heller 1, Ernst R Werner 1, Beat Thöny 1, Gabriele Werner-Felmayer 1
PMCID: PMC1223526  PMID: 12708971

Abstract

Biosynthesis of (6 R )-5,6,7,8-tetrahydro-L-biopterin (H(4)-biopterin), an essential cofactor for aromatic amino acid hydroxylases and NO synthases, is effectively induced by cytokines in most of the cell types. However, human monocytes/macrophages form only a little H(4)-biopterin, but release neopterin/7,8-dihydroneopterin instead. Whereas 6-pyruvoyl tetrahydropterin synthase (PTPS) activity, the second enzyme of H(4)-biopterin biosynthesis, is hardly detectable in these cells, PTPS mRNA levels were comparable with those of cell types containing intact PTPS activity. By screening a THP-1 cDNA library, we identified clones encoding the entire open reading frame (642 bp) as well as clones lacking the 23 bp exon 3, which results in a premature stop codon. Quantification of the two mRNA species in different cell types (blood-derived cells, fibroblasts and endothelial cells) and cell lines showed that the amount of exon-3-containing mRNA is correlated closely to PTPS activity. The ratio of exon-3-containing to exon-3-lacking PTPS mRNA is not affected by differential mRNA stability or nonsense-mediated mRNA decay. THP-1 cells transduced with wild-type PTPS cDNA produced H(4)-biopterin levels and expressed PTPS activities and protein amounts comparable with those of fibroblasts. We therefore conclude that exon 3 skipping in transcription rather than post-transcriptional mechanisms is a major cause of the low PTPS protein expression observed in human macrophages and related cell types.

Full Text

The Full Text of this article is available as a PDF (277.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderton W. K., Cooper C. E., Knowles R. G. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001 Aug 1;357(Pt 3):593–615. doi: 10.1042/0264-6021:3570593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001 Oct;2(10):907–916. doi: 10.1038/ni1001-907. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Byers Peter H. Killing the messenger: new insights into nonsense-mediated mRNA decay. J Clin Invest. 2002 Jan;109(1):3–6. doi: 10.1172/JCI14841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chan R. C., Black D. L. Conserved intron elements repress splicing of a neuron-specific c-src exon in vitro. Mol Cell Biol. 1995 Nov;15(11):6377–6385. doi: 10.1128/mcb.15.11.6377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fuchs D., Weiss G., Wachter H. Neopterin, biochemistry and clinical use as a marker for cellular immune reactions. Int Arch Allergy Immunol. 1993;101(1):1–6. doi: 10.1159/000236491. [DOI] [PubMed] [Google Scholar]
  7. Golderer G., Werner E. R., Heufler C., Strohmaier W., Gröbner P., Werner-Felmayer G. GTP cyclohydrolase I mRNA: novel splice variants in the slime mould Physarum polycephalum and in human monocytes (THP-1) indicate conservation of mRNA processing. Biochem J. 2001 Apr 15;355(Pt 2):499–507. doi: 10.1042/0264-6021:3550499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guhaniyogi J., Brewer G. Regulation of mRNA stability in mammalian cells. Gene. 2001 Mar 7;265(1-2):11–23. doi: 10.1016/s0378-1119(01)00350-x. [DOI] [PubMed] [Google Scholar]
  9. Heller R., Unbehaun A., Schellenberg B., Mayer B., Werner-Felmayer G., Werner E. R. L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J Biol Chem. 2001 Jan 5;276(1):40–47. doi: 10.1074/jbc.M004392200. [DOI] [PubMed] [Google Scholar]
  10. Hirayama K., Kapatos G. Expression and regulation of rat 6-pyruvoyl tetrahydropterin synthase mRNA. Neurochem Int. 1995 Jun;26(6):601–606. doi: 10.1016/0197-0186(94)00175-t. [DOI] [PubMed] [Google Scholar]
  11. Kluge C., Brecevic L., Heizmann C. W., Blau N., Thöny B. Chromosomal localization, genomic structure and characterization of the human gene and a retropseudogene for 6-pyruvoyltetrahydropterin synthase. Eur J Biochem. 1996 Sep 1;240(2):477–484. doi: 10.1111/j.1432-1033.1996.0477h.x. [DOI] [PubMed] [Google Scholar]
  12. Lin C. M., Tan Y., Lee Y. M., Chang C. C., Hsiao K. J. Expression of human phenylalanine hydroxylase activity in T lymphocytes of classical phenylketonuria children by retroviral-mediated gene transfer. J Inherit Metab Dis. 1997 Nov;20(6):742–754. doi: 10.1023/a:1005303331218. [DOI] [PubMed] [Google Scholar]
  13. Linscheid P., Schaffner A., Blau N., Schoedon G. Regulation of 6-pyruvoyltetrahydropterin synthase activity and messenger RNA abundance in human vascular endothelial cells. Circulation. 1998 Oct 27;98(17):1703–1706. doi: 10.1161/01.cir.98.17.1703. [DOI] [PubMed] [Google Scholar]
  14. Romani N., Reider D., Heuer M., Ebner S., Kämpgen E., Eibl B., Niederwieser D., Schuler G. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods. 1996 Sep 27;196(2):137–151. doi: 10.1016/0022-1759(96)00078-6. [DOI] [PubMed] [Google Scholar]
  15. Scherer-Oppliger T., Leimbacher W., Blau N., Thöny B. Serine 19 of human 6-pyruvoyltetrahydropterin synthase is phosphorylated by cGMP protein kinase II. J Biol Chem. 1999 Oct 29;274(44):31341–31348. doi: 10.1074/jbc.274.44.31341. [DOI] [PubMed] [Google Scholar]
  16. Schneemann Markus, Schoedon Gabriele. Species differences in macrophage NO production are important. Nat Immunol. 2002 Feb;3(2):102–102. doi: 10.1038/ni0202-102a. [DOI] [PubMed] [Google Scholar]
  17. Schneemann Markus, Schoedon Gabriele. Species differences in macrophage NO production are important. Nat Immunol. 2002 Feb;3(2):102–102. doi: 10.1038/ni0202-102a. [DOI] [PubMed] [Google Scholar]
  18. Schoedon G., Troppmair J., Adolf G., Huber C., Niederwieser A. Interferon-gamma enhances biosynthesis of pterins in peripheral blood mononuclear cells by induction of GTP-cyclohydrolase I activity. J Interferon Res. 1986 Dec;6(6):697–703. doi: 10.1089/jir.1986.6.697. [DOI] [PubMed] [Google Scholar]
  19. Schoedon G., Troppmair J., Fontana A., Huber C., Curtius H. C., Niederwieser A. Biosynthesis and metabolism of pterins in peripheral blood mononuclear cells and leukemia lines of man and mouse. Eur J Biochem. 1987 Jul 15;166(2):303–310. doi: 10.1111/j.1432-1033.1987.tb13515.x. [DOI] [PubMed] [Google Scholar]
  20. Thöny B., Auerbach G., Blau N. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J. 2000 Apr 1;347(Pt 1):1–16. [PMC free article] [PubMed] [Google Scholar]
  21. Thöny B., Leimbacher W., Blau N., Harvie A., Heizmann C. W. Hyperphenylalaninemia due to defects in tetrahydrobiopterin metabolism: molecular characterization of mutations in 6-pyruvoyl-tetrahydropterin synthase. Am J Hum Genet. 1994 May;54(5):782–792. [PMC free article] [PubMed] [Google Scholar]
  22. Thöny B., Leimbacher W., Bürgisser D., Heizmann C. W. Human 6-pyruvoyltetrahydropterin synthase: cDNA cloning and heterologous expression of the recombinant enzyme. Biochem Biophys Res Commun. 1992 Dec 30;189(3):1437–1443. doi: 10.1016/0006-291x(92)90235-d. [DOI] [PubMed] [Google Scholar]
  23. Thöny B., Leimbacher W., Stuhlmann H., Heizmann C. W., Blau N. Retrovirus-mediated gene transfer of 6-pyruvoyl-tetrahydropterin synthase corrects tetrahydrobiopterin deficiency in fibroblasts from hyperphenylalaninemic patients. Hum Gene Ther. 1996 Aug 20;7(13):1587–1593. doi: 10.1089/hum.1996.7.13-1587. [DOI] [PubMed] [Google Scholar]
  24. Turri M. O., Ilg E. C., Thöny B., Blau N. Structure, genomic localization and recombinant expression of the mouse 6-pyruvoyl-tetrahydropterin synthase gene. Biol Chem. 1998 Dec;379(12):1441–1447. doi: 10.1515/bchm.1998.379.12.1441. [DOI] [PubMed] [Google Scholar]
  25. Werner-Felmayer G., Golderer G., Werner E. R. Tetrahydrobiopterin biosynthesis, utilization and pharmacological effects. Curr Drug Metab. 2002 Apr;3(2):159–173. doi: 10.2174/1389200024605073. [DOI] [PubMed] [Google Scholar]
  26. Werner E. R., Wachter H., Werner-Felmayer G. Determination of tetrahydrobiopterin biosynthetic activities by high-performance liquid chromatography with fluorescence detection. Methods Enzymol. 1997;281:53–61. doi: 10.1016/s0076-6879(97)81008-7. [DOI] [PubMed] [Google Scholar]
  27. Werner E. R., Werner-Felmayer G., Fuchs D., Hausen A., Reibnegger G., Yim J. J., Pfleiderer W., Wachter H. Tetrahydrobiopterin biosynthetic activities in human macrophages, fibroblasts, THP-1, and T 24 cells. GTP-cyclohydrolase I is stimulated by interferon-gamma, and 6-pyruvoyl tetrahydropterin synthase and sepiapterin reductase are constitutively present. J Biol Chem. 1990 Feb 25;265(6):3189–3192. [PubMed] [Google Scholar]
  28. Werner E. R., Werner-Felmayer G., Fuchs D., Hausen A., Reibnegger G., Yim J. J., Wachter H. Impact of tumour necrosis factor-alpha and interferon-gamma on tetrahydrobiopterin synthesis in murine fibroblasts and macrophages. Biochem J. 1991 Dec 15;280(Pt 3):709–714. doi: 10.1042/bj2800709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wilusz C. J., Wormington M., Peltz S. W. The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol. 2001 Apr;2(4):237–246. doi: 10.1038/35067025. [DOI] [PubMed] [Google Scholar]
  30. Wirleitner B., Czaputa R., Oettl K., Böck G., Widner B., Reibnegger G., Baier G., Fuchs D., Baier-Bitterlich G. Induction of apoptosis by 7,8-dihydroneopterin: involvement of radical formation. Immunobiology. 2001 May;203(4):629–641. doi: 10.1016/s0171-2985(01)80012-7. [DOI] [PubMed] [Google Scholar]
  31. Ziegler I., Schott K., Lübbert M., Herrmann F., Schwuléra U., Bacher A. Control of tetrahydrobiopterin synthesis in T lymphocytes by synergistic action of interferon-gamma and interleukin-2. J Biol Chem. 1990 Oct 5;265(28):17026–17030. [PubMed] [Google Scholar]
  32. Ziegler I., Schwulera U., Ellwart J. Pteridines are produced during interleukin 2-induced T-cell proliferation and modulate transmission of this signal. Exp Cell Res. 1986 Dec;167(2):531–538. doi: 10.1016/0014-4827(86)90192-8. [DOI] [PubMed] [Google Scholar]
  33. Zorzi Giovanna, Thöny Beat, Blau Nenad. Reduced nitric oxide metabolites in CSF of patients with tetrahydrobiopterin deficiency. J Neurochem. 2002 Jan;80(2):362–364. doi: 10.1046/j.0022-3042.2001.00710.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES