Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 1;373(Pt 3):865–873. doi: 10.1042/BJ20030088

A novel cytochrome c peroxidase from Neisseria gonorrhoeae: a lipoprotein from a Gram-negative bacterium.

Susan Turner 1, Eleanor Reid 1, Harry Smith 1, Jeffrey Cole 1
PMCID: PMC1223530  PMID: 12720546

Abstract

A cytochrome c peroxidase (CCP) produced by Neisseria gonorrhoeae has been shown to have novel characteristics by investigating its location, expression and role in Neisseria gonorrhoeae and by expression in Escherichia coli. Analysis of the N-terminus of CCP indicated that it is a lipoprotein with a signal peptide for cleavage by signal peptidase II. Expression of the gonococcal CCP in E. coli revealed that it is first synthesized as a pro-apo-cytochrome that is translocated across the cytoplasmic membrane. The signal peptide is cleaved and haem is attached in the periplasm. The gonococcal CCP was associated with the membrane of both E. coli and N. gonorrhoeae. The expression of a MalE-CCP fusion protein has allowed characterization of CCP in vitro. Evidence is presented that CCP protects gonococci from hydrogen peroxide, presumably in the periplasmic compartment of the cell. The expression of CCP is dependent on the transcription factor FNR, but is repressed by nitrite, indicating that it could be most important in the stationary-phase response. These data support the hypothesis that the gonococcal lipoprotein CCP is anchored to the membrane in the periplasm, where it might be responsible for the reduction of hydrogen peroxide. Other putative CCP lipoproteins have been identified, representing a new subclass of bacterial CCP proteins.

Full Text

The Full Text of this article is available as a PDF (246.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alves T., Besson S., Duarte L. C., Pettigrew G. W., Girio F. M., Devreese B., Vandenberghe I., Van Beeumen J., Fauque G., Moura I. A cytochrome c peroxidase from Pseudomonas nautica 617 active at high ionic strength: expression, purification and characterization. Biochim Biophys Acta. 1999 Oct 12;1434(2):248–259. doi: 10.1016/s0167-4838(99)00188-0. [DOI] [PubMed] [Google Scholar]
  2. Arciero D. M., Hooper A. B. A di-heme cytochrome c peroxidase from Nitrosomonas europaea catalytically active in both the oxidized and half-reduced states. J Biol Chem. 1994 Apr 22;269(16):11878–11886. [PubMed] [Google Scholar]
  3. Arslan E., Schulz H., Zufferey R., Künzler P., Thöny-Meyer L. Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb3 oxidase in Escherichia coli. Biochem Biophys Res Commun. 1998 Oct 29;251(3):744–747. doi: 10.1006/bbrc.1998.9549. [DOI] [PubMed] [Google Scholar]
  4. Dev I. K., Harvey R. J., Ray P. H. Inhibition of prolipoprotein signal peptidase by globomycin. J Biol Chem. 1985 May 25;260(10):5891–5894. [PubMed] [Google Scholar]
  5. Ellfolk N., Rönnberg M., Osterlund K. Structural and functional features of Pseudomonas cytochrome c peroxidase. Biochim Biophys Acta. 1991 Oct 11;1080(1):68–77. doi: 10.1016/0167-4838(91)90113-e. [DOI] [PubMed] [Google Scholar]
  6. Ellfolk N., Soininen R. Pseudomonas cytochrome c peroxidase. I. Purification procedure. Acta Chem Scand. 1970;24(6):2126–2136. doi: 10.3891/acta.chem.scand.24-2126. [DOI] [PubMed] [Google Scholar]
  7. Foote N., Peterson J., Gadsby P. M., Greenwood C., Thomson A. J. Redox-linked spin-state changes in the di-haem cytochrome c-551 peroxidase from Pseudomonas aeruginosa. Biochem J. 1985 Aug 15;230(1):227–237. doi: 10.1042/bj2300227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fülöp V., Ridout C. J., Greenwood C., Hajdu J. Crystal structure of the di-haem cytochrome c peroxidase from Pseudomonas aeruginosa. Structure. 1995 Nov 15;3(11):1225–1233. doi: 10.1016/s0969-2126(01)00258-1. [DOI] [PubMed] [Google Scholar]
  9. Gilmour R., Goodhew C. F., Pettigrew G. W., Prazeres S., Moura J. J., Moura I. The kinetics of the oxidation of cytochrome c by Paracoccus cytochrome c peroxidase. Biochem J. 1994 Jun 15;300(Pt 3):907–914. doi: 10.1042/bj3000907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goodhew C. F., Wilson I. B., Hunter D. J., Pettigrew G. W. The cellular location and specificity of bacterial cytochrome c peroxidases. Biochem J. 1990 Nov 1;271(3):707–712. doi: 10.1042/bj2710707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hantke K., Braun V. Covalent binding of lipid to protein. Diglyceride and amide-linked fatty acid at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane. Eur J Biochem. 1973 Apr;34(2):284–296. doi: 10.1111/j.1432-1033.1973.tb02757.x. [DOI] [PubMed] [Google Scholar]
  12. Hayashi S., Wu H. C. Lipoproteins in bacteria. J Bioenerg Biomembr. 1990 Jun;22(3):451–471. doi: 10.1007/BF00763177. [DOI] [PubMed] [Google Scholar]
  13. Householder T. C., Belli W. A., Lissenden S., Cole J. A., Clark V. L. cis- and trans-acting elements involved in regulation of aniA, the gene encoding the major anaerobically induced outer membrane protein in Neisseria gonorrhoeae. J Bacteriol. 1999 Jan;181(2):541–551. doi: 10.1128/jb.181.2.541-551.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hu W., De Smet L., Van Driessche G., Bartsch R. G., Meyer T. E., Cusanovich M. A., Van Beeumen J. Characterization of cytochrome c-556 from the purple phototrophic bacterium Rhodobacter capsulatus as a cytochrome-c peroxidase. Eur J Biochem. 1998 Nov 15;258(1):29–36. doi: 10.1046/j.1432-1327.1998.2580029.x. [DOI] [PubMed] [Google Scholar]
  15. Hunter D. J., Brown K. R., Pettigrew G. W. The role of cytochrome c4 in bacterial respiration. Cellular location and selective removal from membranes. Biochem J. 1989 Aug 15;262(1):233–240. doi: 10.1042/bj2620233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hussain M., Ichihara S., Mizushima S. Accumulation of glyceride-containing precursor of the outer membrane lipoprotein in the cytoplasmic membrane of Escherichia coli treated with globomycin. J Biol Chem. 1980 Apr 25;255(8):3707–3712. [PubMed] [Google Scholar]
  17. Inukai M., Enokita R., Torikata A., Nakahara M., Iwado S., Arai M. Globomycin, a new peptide antibiotic with spheroplast-forming activity. I. Taxonomy of producing organisms and fermentation. J Antibiot (Tokyo) 1978 May;31(5):410–420. doi: 10.7164/antibiotics.31.410. [DOI] [PubMed] [Google Scholar]
  18. Johnson S. R., Steiner B. M., Cruce D. D., Perkins G. H., Arko R. J. Characterization of a catalase-deficient strain of Neisseria gonorrhoeae: evidence for the significance of catalase in the biology of N. gonorrhoeae. Infect Immun. 1993 Apr;61(4):1232–1238. doi: 10.1128/iai.61.4.1232-1238.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. King K. Y., Horenstein J. A., Caparon M. G. Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. J Bacteriol. 2000 Oct;182(19):5290–5299. doi: 10.1128/jb.182.19.5290-5299.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Knapp J. S., Clark V. L. Anaerobic growth of Neisseria gonorrhoeae coupled to nitrite reduction. Infect Immun. 1984 Oct;46(1):176–181. doi: 10.1128/iai.46.1.176-181.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Lissenden S., Mohan S., Overton T., Regan T., Crooke H., Cardinale J. A., Householder T. C., Adams P., O'Conner C. D., Clark V. L. Identification of transcription activators that regulate gonococcal adaptation from aerobic to anaerobic or oxygen-limited growth. Mol Microbiol. 2000 Aug;37(4):839–855. doi: 10.1046/j.1365-2958.2000.02050.x. [DOI] [PubMed] [Google Scholar]
  23. Mellies J., Jose J., Meyer T. F. The Neisseria gonorrhoeae gene aniA encodes an inducible nitrite reductase. Mol Gen Genet. 1997 Nov;256(5):525–532. doi: 10.1007/s004380050597. [DOI] [PubMed] [Google Scholar]
  24. Nassif X., Puaoi D., So M. Transposition of Tn1545-delta 3 in the pathogenic Neisseriae: a genetic tool for mutagenesis. J Bacteriol. 1991 Apr;173(7):2147–2154. doi: 10.1128/jb.173.7.2147-2154.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pettigrew G. W. The cytochrome c peroxidase of Paracoccus denitrificans. Biochim Biophys Acta. 1991 May 23;1058(1):25–27. doi: 10.1016/s0005-2728(05)80261-0. [DOI] [PubMed] [Google Scholar]
  26. Pugsley A. P. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 1993 Mar;57(1):50–108. doi: 10.1128/mr.57.1.50-108.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ridout C. J., James R., Greenwood C. Nucleotide sequence encoding the di-haem cytochrome c551 peroxidase from Pseudomonas aeruginosa. FEBS Lett. 1995 May 29;365(2-3):152–154. doi: 10.1016/0014-5793(95)00461-h. [DOI] [PubMed] [Google Scholar]
  28. Sankaran K., Gan K., Rash B., Qi H. Y., Wu H. C., Rick P. D. Roles of histidine-103 and tyrosine-235 in the function of the prolipoprotein diacylglyceryl transferase of Escherichia coli. J Bacteriol. 1997 May;179(9):2944–2948. doi: 10.1128/jb.179.9.2944-2948.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sankaran K., Wu H. C. Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem. 1994 Aug 5;269(31):19701–19706. [PubMed] [Google Scholar]
  30. Seydel A., Gounon P., Pugsley A. P. Testing the '+2 rule' for lipoprotein sorting in the Escherichia coli cell envelope with a new genetic selection. Mol Microbiol. 1999 Nov;34(4):810–821. doi: 10.1046/j.1365-2958.1999.01647.x. [DOI] [PubMed] [Google Scholar]
  31. Shimizu H., Schuller D. J., Lanzilotta W. N., Sundaramoorthy M., Arciero D. M., Hooper A. B., Poulos T. L. Crystal structure of Nitrosomonas europaea cytochrome c peroxidase and the structural basis for ligand switching in bacterial di-heme peroxidases. Biochemistry. 2001 Nov 13;40(45):13483–13490. doi: 10.1021/bi011481h. [DOI] [PubMed] [Google Scholar]
  32. Soininen R., Sojonen H., Ellfolk N. Pseudomonas cytochrome c peroxidase. II. Localization of cytochrome c peroxidase in Pseudomonas fluorescens. Acta Chem Scand. 1970;24(7):2314–2320. doi: 10.3891/acta.chem.scand.24-2314. [DOI] [PubMed] [Google Scholar]
  33. Sutcliffe I. C., Russell R. R. Lipoproteins of gram-positive bacteria. J Bacteriol. 1995 Mar;177(5):1123–1128. doi: 10.1128/jb.177.5.1123-1128.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Thomas P. E., Ryan D., Levin W. An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem. 1976 Sep;75(1):168–176. doi: 10.1016/0003-2697(76)90067-1. [DOI] [PubMed] [Google Scholar]
  35. Tokunaga M., Tokunaga H., Wu H. C. Post-translational modification and processing of Escherichia coli prolipoprotein in vitro. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2255–2259. doi: 10.1073/pnas.79.7.2255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Van Spanning R. J., De Boer A. P., Reijnders W. N., Westerhoff H. V., Stouthamer A. H., Van Der Oost J. FnrP and NNR of Paracoccus denitrificans are both members of the FNR family of transcriptional activators but have distinct roles in respiratory adaptation in response to oxygen limitation. Mol Microbiol. 1997 Mar;23(5):893–907. doi: 10.1046/j.1365-2958.1997.2801638.x. [DOI] [PubMed] [Google Scholar]
  37. Zahn J. A., Arciero D. M., Hooper A. B., Coats J. R., DiSpirito A. A. Cytochrome c peroxidase from Methylococcus capsulatus Bath. Arch Microbiol. 1997 Nov;168(5):362–372. doi: 10.1007/s002030050510. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES