Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 1;373(Pt 3):845–853. doi: 10.1042/BJ20030275

Differential role of glutaredoxin and thioredoxin in metabolic oxidative stress-induced activation of apoptosis signal-regulating kinase 1.

Jae J Song 1, Yong J Lee 1
PMCID: PMC1223534  PMID: 12723971

Abstract

Redox-sensing molecules such as thioredoxin (TRX) and glutaredoxin (GRX) bind to apoptosis signal-regulating kinase 1 (ASK1) and suppress its activation. Glucose deprivation disrupted the interaction between TRX/GRX and ASK1 and subsequently activated the ASK1-stress-activated protein kinase/extracellular-signal-regulated kinase kinase-c-Jun N-terminal kinase 1 (JNK1) signal-transduction pathway. L-Buthionine-( S, R )-sulphoximine, which decreases intracellular glutathione content, enhanced glucose deprivation-induced activation of JNK1 by promoting the dissociation of TRX, but not GRX, from ASK1. Treatment of cells with exogenous glutathione disulphide ester resulted in the dissociation of GRX, but not TRX, from ASK1 and the subsequent activation of JNK1. Nonetheless, overexpression of calatase, an H(2)O(2) scavenger, inhibited JNK1 activation and cytotoxicity as well as the dissociation of TRX and GRX from ASK1 during combined glucose deprivation and L-buthionine-( S, R )-sulphoximine treatment. Taken together, glucose deprivation-induced metabolic oxidative stress may activate ASK1 through two different pathways: glutathione-dependent GRX-ASK1 and glutathione-independent TRX-ASK1 pathways.

Full Text

The Full Text of this article is available as a PDF (350.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackburn R. V., Spitz D. R., Liu X., Galoforo S. S., Sim J. E., Ridnour L. A., Chen J. C., Davis B. H., Corry P. M., Lee Y. J. Metabolic oxidative stress activates signal transduction and gene expression during glucose deprivation in human tumor cells. Free Radic Biol Med. 1999 Feb;26(3-4):419–430. doi: 10.1016/s0891-5849(98)00217-2. [DOI] [PubMed] [Google Scholar]
  2. Bradley T. M., Hidalgo E., Leautaud V., Ding H., Demple B. Cysteine-to-alanine replacements in the Escherichia coli SoxR protein and the role of the [2Fe-2S] centers in transcriptional activation. Nucleic Acids Res. 1997 Apr 15;25(8):1469–1475. doi: 10.1093/nar/25.8.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chandra J., Samali A., Orrenius S. Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med. 2000 Aug;29(3-4):323–333. doi: 10.1016/s0891-5849(00)00302-6. [DOI] [PubMed] [Google Scholar]
  4. Chang H. Y., Nishitoh H., Yang X., Ichijo H., Baltimore D. Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science. 1998 Sep 18;281(5384):1860–1863. doi: 10.1126/science.281.5384.1860. [DOI] [PubMed] [Google Scholar]
  5. Chang H. Y., Yang X., Baltimore D. Dissecting Fas signaling with an altered-specificity death-domain mutant: requirement of FADD binding for apoptosis but not Jun N-terminal kinase activation. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1252–1256. doi: 10.1073/pnas.96.4.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chrestensen C. A., Starke D. W., Mieyal J. J. Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. J Biol Chem. 2000 Aug 25;275(34):26556–26565. doi: 10.1074/jbc.M004097200. [DOI] [PubMed] [Google Scholar]
  7. Delaunay A., Isnard A. D., Toledano M. B. H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J. 2000 Oct 2;19(19):5157–5166. doi: 10.1093/emboj/19.19.5157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ding H., Demple B. In vivo kinetics of a redox-regulated transcriptional switch. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8445–8449. doi: 10.1073/pnas.94.16.8445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ehrhart J., Zeevalk G. D. Hydrogen peroxide removal and glutathione mixed disulfide formation during metabolic inhibition in mesencephalic cultures. J Neurochem. 2001 Jun;77(6):1496–1507. doi: 10.1046/j.1471-4159.2001.00355.x. [DOI] [PubMed] [Google Scholar]
  10. Griffith O. W. Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J Biol Chem. 1982 Nov 25;257(22):13704–13712. [PubMed] [Google Scholar]
  11. Hall A. G. Review: The role of glutathione in the regulation of apoptosis. Eur J Clin Invest. 1999 Mar;29(3):238–245. doi: 10.1046/j.1365-2362.1999.00447.x. [DOI] [PubMed] [Google Scholar]
  12. Hardy S., Kitamura M., Harris-Stansil T., Dai Y., Phipps M. L. Construction of adenovirus vectors through Cre-lox recombination. J Virol. 1997 Mar;71(3):1842–1849. doi: 10.1128/jvi.71.3.1842-1849.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hidalgo E., Demple B. Activation of SoxR-dependent transcription in vitro by noncatalytic or NifS-mediated assembly of [2Fe-2S] clusters into apo-SoxR. J Biol Chem. 1996 Mar 29;271(13):7269–7272. doi: 10.1074/jbc.271.13.7269. [DOI] [PubMed] [Google Scholar]
  14. Hidalgo E., Demple B. An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein. EMBO J. 1994 Jan 1;13(1):138–146. doi: 10.1002/j.1460-2075.1994.tb06243.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hidalgo E., Ding H., Demple B. Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator. Trends Biochem Sci. 1997 Jun;22(6):207–210. doi: 10.1016/s0968-0004(97)01068-2. [DOI] [PubMed] [Google Scholar]
  16. Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem. 1989 Aug 25;264(24):13963–13966. [PubMed] [Google Scholar]
  17. Ichijo H., Nishida E., Irie K., ten Dijke P., Saitoh M., Moriguchi T., Takagi M., Matsumoto K., Miyazono K., Gotoh Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 1997 Jan 3;275(5296):90–94. doi: 10.1126/science.275.5296.90. [DOI] [PubMed] [Google Scholar]
  18. Kamata H., Hirata H. Redox regulation of cellular signalling. Cell Signal. 1999 Jan;11(1):1–14. doi: 10.1016/s0898-6568(98)00037-0. [DOI] [PubMed] [Google Scholar]
  19. Kirsch Jeffrey D., Yi Ae-Kyung, Spitz Douglas R., Krieg Arthur M. Accumulation of glutathione disulfide mediates NF-kappaB activation during immune stimulation with CpG DNA. Antisense Nucleic Acid Drug Dev. 2002 Oct;12(5):327–340. doi: 10.1089/108729002761381302. [DOI] [PubMed] [Google Scholar]
  20. Ko Y. G., Kang Y. S., Park H., Seol W., Kim J., Kim T., Park H. S., Choi E. J., Kim S. Apoptosis signal-regulating kinase 1 controls the proapoptotic function of death-associated protein (Daxx) in the cytoplasm. J Biol Chem. 2001 Aug 8;276(42):39103–39106. doi: 10.1074/jbc.M105928200. [DOI] [PubMed] [Google Scholar]
  21. Lee Y. J., Chen J. C., Amoscato A. A., Bennouna J., Spitz D. R., Suntharalingam M., Rhee J. G. Protective role of Bcl2 in metabolic oxidative stress-induced cell death. J Cell Sci. 2001 Feb;114(Pt 4):677–684. doi: 10.1242/jcs.114.4.677. [DOI] [PubMed] [Google Scholar]
  22. Lee Y. J., Corry P. M. Metabolic oxidative stress-induced HSP70 gene expression is mediated through SAPK pathway. Role of Bcl-2 and c-Jun NH2-terminal kinase. J Biol Chem. 1998 Nov 6;273(45):29857–29863. doi: 10.1074/jbc.273.45.29857. [DOI] [PubMed] [Google Scholar]
  23. Lee Y. J., Galoforo S. S., Berns C. M., Chen J. C., Davis B. H., Sim J. E., Corry P. M., Spitz D. R. Glucose deprivation-induced cytotoxicity and alterations in mitogen-activated protein kinase activation are mediated by oxidative stress in multidrug-resistant human breast carcinoma cells. J Biol Chem. 1998 Feb 27;273(9):5294–5299. doi: 10.1074/jbc.273.9.5294. [DOI] [PubMed] [Google Scholar]
  24. Lee Y. J., Galoforo S. S., Sim J. E., Ridnour L. A., Choi J., Forman H. J., Corry P. M., Spitz D. R. Dominant-negative Jun N-terminal protein kinase (JNK-1) inhibits metabolic oxidative stress during glucose deprivation in a human breast carcinoma cell line. Free Radic Biol Med. 2000 Feb 15;28(4):575–584. doi: 10.1016/s0891-5849(99)00267-1. [DOI] [PubMed] [Google Scholar]
  25. Liu H., Nishitoh H., Ichijo H., Kyriakis J. M. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol. 2000 Mar;20(6):2198–2208. doi: 10.1128/mcb.20.6.2198-2208.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mitsui A., Hirakawa T., Yodoi J. Reactive oxygen-reducing and protein-refolding activities of adult T cell leukemia-derived factor/human thioredoxin. Biochem Biophys Res Commun. 1992 Aug 14;186(3):1220–1226. doi: 10.1016/s0006-291x(05)81536-0. [DOI] [PubMed] [Google Scholar]
  27. Nunoshiba T., deRojas-Walker T., Wishnok J. S., Tannenbaum S. R., Demple B. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9993–9997. doi: 10.1073/pnas.90.21.9993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Padilla C. A., Martínez-Galisteo E., Bárcena J. A., Spyrou G., Holmgren A. Purification from placenta, amino acid sequence, structure comparisons and cDNA cloning of human glutaredoxin. Eur J Biochem. 1995 Jan 15;227(1-2):27–34. doi: 10.1111/j.1432-1033.1995.tb20356.x. [DOI] [PubMed] [Google Scholar]
  29. Saitoh M., Nishitoh H., Fujii M., Takeda K., Tobiume K., Sawada Y., Kawabata M., Miyazono K., Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998 May 1;17(9):2596–2606. doi: 10.1093/emboj/17.9.2596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sato N., Iwata S., Nakamura K., Hori T., Mori K., Yodoi J. Thiol-mediated redox regulation of apoptosis. Possible roles of cellular thiols other than glutathione in T cell apoptosis. J Immunol. 1995 Apr 1;154(7):3194–3203. [PubMed] [Google Scholar]
  31. Song Jae J., Rhee Juong G., Suntharalingam Mohan, Walsh Susan A., Spitz Douglas R., Lee Yong J. Role of glutaredoxin in metabolic oxidative stress. Glutaredoxin as a sensor of oxidative stress mediated by H2O2. J Biol Chem. 2002 Sep 19;277(48):46566–46575. doi: 10.1074/jbc.M206826200. [DOI] [PubMed] [Google Scholar]
  32. Takemoto T., Zhang Q. M., Yonei S. Different mechanisms of thioredoxin in its reduced and oxidized forms in defense against hydrogen peroxide in Escherichia coli. Free Radic Biol Med. 1998 Mar 1;24(4):556–562. doi: 10.1016/s0891-5849(97)00287-6. [DOI] [PubMed] [Google Scholar]
  33. Tobiume K., Matsuzawa A., Takahashi T., Nishitoh H., Morita K., Takeda K., Minowa O., Miyazono K., Noda T., Ichijo H. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2001 Mar;2(3):222–228. doi: 10.1093/embo-reports/kve046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Toone W. M., Morgan B. A., Jones N. Redox control of AP-1-like factors in yeast and beyond. Oncogene. 2001 Apr 30;20(19):2336–2346. doi: 10.1038/sj.onc.1204384. [DOI] [PubMed] [Google Scholar]
  35. Wilhelm D., Bender K., Knebel A., Angel P. The level of intracellular glutathione is a key regulator for the induction of stress-activated signal transduction pathways including Jun N-terminal protein kinases and p38 kinase by alkylating agents. Mol Cell Biol. 1997 Aug;17(8):4792–4800. doi: 10.1128/mcb.17.8.4792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wüllner U., Seyfried J., Groscurth P., Beinroth S., Winter S., Gleichmann M., Heneka M., Löschmann P., Schulz J. B., Weller M. Glutathione depletion and neuronal cell death: the role of reactive oxygen intermediates and mitochondrial function. Brain Res. 1999 Apr 24;826(1):53–62. doi: 10.1016/s0006-8993(99)01228-7. [DOI] [PubMed] [Google Scholar]
  37. Yang X., Khosravi-Far R., Chang H. Y., Baltimore D. Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell. 1997 Jun 27;89(7):1067–1076. doi: 10.1016/s0092-8674(00)80294-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yang Y., Jao S. c., Nanduri S., Starke D. W., Mieyal J. J., Qin J. Reactivity of the human thioltransferase (glutaredoxin) C7S, C25S, C78S, C82S mutant and NMR solution structure of its glutathionyl mixed disulfide intermediate reflect catalytic specificity. Biochemistry. 1998 Dec 8;37(49):17145–17156. doi: 10.1021/bi9806504. [DOI] [PubMed] [Google Scholar]
  39. Yuasa T., Ohno S., Kehrl J. H., Kyriakis J. M. Tumor necrosis factor signaling to stress-activated protein kinase (SAPK)/Jun NH2-terminal kinase (JNK) and p38. Germinal center kinase couples TRAF2 to mitogen-activated protein kinase/ERK kinase kinase 1 and SAPK while receptor interacting protein associates with a mitogen-activated protein kinase kinase kinase upstream of MKK6 and p38. J Biol Chem. 1998 Aug 28;273(35):22681–22692. doi: 10.1074/jbc.273.35.22681. [DOI] [PubMed] [Google Scholar]
  40. Zhang L., Chen J., Fu H. Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8511–8515. doi: 10.1073/pnas.96.15.8511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zheng M., Aslund F., Storz G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science. 1998 Mar 13;279(5357):1718–1721. doi: 10.1126/science.279.5357.1718. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES