Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 1;373(Pt 3):973–979. doi: 10.1042/BJ20021818

Human aldose reductase and human small intestine aldose reductase are efficient retinal reductases: consequences for retinoid metabolism.

Bernat Crosas 1, David J Hyndman 1, Oriol Gallego 1, Sílvia Martras 1, Xavier Parés 1, T Geoffrey Flynn 1, Jaume Farrés 1
PMCID: PMC1223539  PMID: 12732097

Abstract

Aldo-keto reductases (AKRs) are NAD(P)H-dependent oxidoreductases that catalyse the reduction of a variety of carbonyl compounds, such as carbohydrates, aliphatic and aromatic aldehydes and steroids. We have studied the retinal reductase activity of human aldose reductase (AR), human small-intestine (HSI) AR and pig aldehyde reductase. Human AR and HSI AR were very efficient in the reduction of all- trans -, 9- cis - and 13- cis -retinal ( k (cat)/ K (m)=1100-10300 mM(-1).min(-1)), constituting the first cytosolic NADP(H)-dependent retinal reductases described in humans. Aldehyde reductase showed no activity with these retinal isomers. Glucose was a poor inhibitor ( K (i)=80 mM) of retinal reductase activity of human AR, whereas tolrestat, a classical AKR inhibitor used pharmacologically to treat diabetes, inhibited retinal reduction by human AR and HSI AR. All- trans -retinoic acid failed to inhibit both enzymes. In this paper we present the AKRs as an emergent superfamily of retinal-active enzymes, putatively involved in the regulation of retinoid biological activity through the assimilation of retinoids from beta-carotene and the control of retinal bioavailability.

Full Text

The Full Text of this article is available as a PDF (192.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abagyan R., Totrov M. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol. 1994 Jan 21;235(3):983–1002. doi: 10.1006/jmbi.1994.1052. [DOI] [PubMed] [Google Scholar]
  2. Allali-Hassani A., Peralba J. M., Martras S., Farrés J., Parés X. Retinoids, omega-hydroxyfatty acids and cytotoxic aldehydes as physiological substrates, and H2-receptor antagonists as pharmacological inhibitors, of human class IV alcohol dehydrogenase. FEBS Lett. 1998 Apr 24;426(3):362–366. doi: 10.1016/s0014-5793(98)00374-3. [DOI] [PubMed] [Google Scholar]
  3. Altucci L., Rossin A., Raffelsberger W., Reitmair A., Chomienne C., Gronemeyer H. Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med. 2001 Jun;7(6):680–686. doi: 10.1038/89050. [DOI] [PubMed] [Google Scholar]
  4. Axel D. I., Frigge A., Dittmann J., Runge H., Spyridopoulos I., Riessen R., Viebahn R., Karsch K. R. All-trans retinoic acid regulates proliferation, migration, differentiation, and extracellular matrix turnover of human arterial smooth muscle cells. Cardiovasc Res. 2001 Mar;49(4):851–862. doi: 10.1016/s0008-6363(00)00312-6. [DOI] [PubMed] [Google Scholar]
  5. Barski O. A., Gabbay K. H., Bohren K. M. The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity. Biochemistry. 1996 Nov 12;35(45):14276–14280. doi: 10.1021/bi9619740. [DOI] [PubMed] [Google Scholar]
  6. Belyaeva Olga V., Kedishvili Natalia Y. Human pancreas protein 2 (PAN2) has a retinal reductase activity and is ubiquitously expressed in human tissues. FEBS Lett. 2002 Nov 20;531(3):489–493. doi: 10.1016/s0014-5793(02)03588-3. [DOI] [PubMed] [Google Scholar]
  7. Bennett M. J., Albert R. H., Jez J. M., Ma H., Penning T. M., Lewis M. Steroid recognition and regulation of hormone action: crystal structure of testosterone and NADP+ bound to 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase. Structure. 1997 Jun 15;5(6):799–812. doi: 10.1016/s0969-2126(97)00234-7. [DOI] [PubMed] [Google Scholar]
  8. Bohren K. M., Grimshaw C. E., Gabbay K. H. Catalytic effectiveness of human aldose reductase. Critical role of C-terminal domain. J Biol Chem. 1992 Oct 15;267(29):20965–20970. [PubMed] [Google Scholar]
  9. Boleda M. D., Saubi N., Farrés J., Parés X. Physiological substrates for rat alcohol dehydrogenase classes: aldehydes of lipid peroxidation, omega-hydroxyfatty acids, and retinoids. Arch Biochem Biophys. 1993 Nov 15;307(1):85–90. doi: 10.1006/abbi.1993.1564. [DOI] [PubMed] [Google Scholar]
  10. Cao D., Fan S. T., Chung S. S. Identification and characterization of a novel human aldose reductase-like gene. J Biol Chem. 1998 May 8;273(19):11429–11435. doi: 10.1074/jbc.273.19.11429. [DOI] [PubMed] [Google Scholar]
  11. Chiang M. Y., Misner D., Kempermann G., Schikorski T., Giguère V., Sucov H. M., Gage F. H., Stevens C. F., Evans R. M. An essential role for retinoid receptors RARbeta and RXRgamma in long-term potentiation and depression. Neuron. 1998 Dec;21(6):1353–1361. doi: 10.1016/s0896-6273(00)80654-6. [DOI] [PubMed] [Google Scholar]
  12. Corcoran J., Maden M. Nerve growth factor acts via retinoic acid synthesis to stimulate neurite outgrowth. Nat Neurosci. 1999 Apr;2(4):307–308. doi: 10.1038/7214. [DOI] [PubMed] [Google Scholar]
  13. Cromlish J. A., Flynn T. G. Identification of pig brain aldehyde reductases with the high-Km aldehyde reductase, the low-Km aldehyde reductase and aldose reductase, carbonyl reductase, and succinic semialdehyde reductase. J Neurochem. 1985 May;44(5):1485–1493. doi: 10.1111/j.1471-4159.1985.tb08786.x. [DOI] [PubMed] [Google Scholar]
  14. Crosas B., Allali-Hassani A., Martínez S. E., Martras S., Persson B., Jörnvall H., Parés X., Farrés J. Molecular basis for differential substrate specificity in class IV alcohol dehydrogenases: a conserved function in retinoid metabolism but not in ethanol oxidation. J Biol Chem. 2000 Aug 18;275(33):25180–25187. doi: 10.1074/jbc.M910040199. [DOI] [PubMed] [Google Scholar]
  15. Crosas B., Cederlund E., Torres D., Jornvall H., Farres J., Pares X. A vertebrate aldo-keto reductase active with retinoids and ethanol. J Biol Chem. 2001 Feb 7;276(22):19132–19140. doi: 10.1074/jbc.M010478200. [DOI] [PubMed] [Google Scholar]
  16. De Winter H. L., von Itzstein M. Aldose reductase as a target for drug design: molecular modeling calculations on the binding of acyclic sugar substrates to the enzyme. Biochemistry. 1995 Jul 4;34(26):8299–8308. doi: 10.1021/bi00026a011. [DOI] [PubMed] [Google Scholar]
  17. Diaz B. V., Lenoir M. C., Ladoux A., Frelin C., Démarchez M., Michel S. Regulation of vascular endothelial growth factor expression in human keratinocytes by retinoids. J Biol Chem. 2000 Jan 7;275(1):642–650. doi: 10.1074/jbc.275.1.642. [DOI] [PubMed] [Google Scholar]
  18. Donohue P. J., Alberts G. F., Hampton B. S., Winkles J. A. A delayed-early gene activated by fibroblast growth factor-1 encodes a protein related to aldose reductase. J Biol Chem. 1994 Mar 18;269(11):8604–8609. [PubMed] [Google Scholar]
  19. Duester G. Families of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid. Eur J Biochem. 2000 Jul;267(14):4315–4324. doi: 10.1046/j.1432-1327.2000.01497.x. [DOI] [PubMed] [Google Scholar]
  20. El-Kabbani O., Rogniaux H., Barth P., Chung R. P., Fletcher E. V., Van Dorsselaer A., Podjarny A. Aldose and aldehyde reductases: correlation of molecular modeling and mass spectrometric studies on the binding of inhibitors to the active site. Proteins. 2000 Nov 15;41(3):407–414. doi: 10.1002/1097-0134(20001115)41:3<407::aid-prot120>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  21. Endo K., Fukui M., Mishima M., Watanabe K. Metabolism of vitamin A affected by prostaglandin F synthase in contractile interstitial cells of bovine lung. Biochem Biophys Res Commun. 2001 Oct 5;287(4):956–961. doi: 10.1006/bbrc.2001.5662. [DOI] [PubMed] [Google Scholar]
  22. Gamble M. V., Mata N. L., Tsin A. T., Mertz J. R., Blaner W. S. Substrate specificities and 13-cis-retinoic acid inhibition of human, mouse and bovine cis-retinol dehydrogenases. Biochim Biophys Acta. 2000 Jan 3;1476(1):3–8. doi: 10.1016/s0167-4838(99)00232-0. [DOI] [PubMed] [Google Scholar]
  23. Grimshaw C. E. Aldose reductase: model for a new paradigm of enzymic perfection in detoxification catalysts. Biochemistry. 1992 Oct 27;31(42):10139–10145. doi: 10.1021/bi00157a001. [DOI] [PubMed] [Google Scholar]
  24. Grimshaw C. E., Mathur E. J. Immunoquantitation of aldose reductase in human tissues. Anal Biochem. 1989 Jan;176(1):66–71. doi: 10.1016/0003-2697(89)90273-x. [DOI] [PubMed] [Google Scholar]
  25. Haeseleer F., Huang J., Lebioda L., Saari J. C., Palczewski K. Molecular characterization of a novel short-chain dehydrogenase/reductase that reduces all-trans-retinal. J Biol Chem. 1998 Aug 21;273(34):21790–21799. doi: 10.1074/jbc.273.34.21790. [DOI] [PubMed] [Google Scholar]
  26. Han C. L., Liao C. S., Wu C. W., Hwong C. L., Lee A. R., Yin S. J. Contribution to first-pass metabolism of ethanol and inhibition by ethanol for retinol oxidation in human alcohol dehydrogenase family--implications for etiology of fetal alcohol syndrome and alcohol-related diseases. Eur J Biochem. 1998 May 15;254(1):25–31. doi: 10.1046/j.1432-1327.1998.2540025.x. [DOI] [PubMed] [Google Scholar]
  27. Heyman R. A., Mangelsdorf D. J., Dyck J. A., Stein R. B., Eichele G., Evans R. M., Thaller C. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell. 1992 Jan 24;68(2):397–406. doi: 10.1016/0092-8674(92)90479-v. [DOI] [PubMed] [Google Scholar]
  28. Hirschberg D., Cederlund E., Crosas B., Jonsson A., Tryggvason S., Farrés J., Parés X., Bergman T., Jörnvall H. N-terminal acetylation in a third protein family of vertebrate alcohol dehydrogenase/retinal reductase found through a 'proteomics' approach in enzyme characterization. Cell Mol Life Sci. 2001 Aug;58(9):1323–1326. doi: 10.1007/PL00000942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hyndman D. J., Flynn T. G. Sequence and expression levels in human tissues of a new member of the aldo-keto reductase family. Biochim Biophys Acta. 1998 Aug 20;1399(2-3):198–202. doi: 10.1016/s0167-4781(98)00109-2. [DOI] [PubMed] [Google Scholar]
  30. Hyndman D. J., Takenoshita R., Vera N. L., Pang S. C., Flynn T. G. Cloning, sequencing, and enzymatic activity of an inducible aldo-keto reductase from Chinese hamster ovary cells. J Biol Chem. 1997 May 16;272(20):13286–13291. doi: 10.1074/jbc.272.20.13286. [DOI] [PubMed] [Google Scholar]
  31. Hyndman D., Flynn T. G. The aldo-keto reductases and their role in cancer. Adv Exp Med Biol. 1999;463:427–434. doi: 10.1007/978-1-4615-4735-8_53. [DOI] [PubMed] [Google Scholar]
  32. Jeffery J., Jörnvall H. Enzyme relationships in a sorbitol pathway that bypasses glycolysis and pentose phosphates in glucose metabolism. Proc Natl Acad Sci U S A. 1983 Feb;80(4):901–905. doi: 10.1073/pnas.80.4.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Jez J. M., Bennett M. J., Schlegel B. P., Lewis M., Penning T. M. Comparative anatomy of the aldo-keto reductase superfamily. Biochem J. 1997 Sep 15;326(Pt 3):625–636. doi: 10.1042/bj3260625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Jez J. M., Flynn T. G., Penning T. M. A new nomenclature for the aldo-keto reductase superfamily. Biochem Pharmacol. 1997 Sep 15;54(6):639–647. doi: 10.1016/s0006-2952(97)84253-0. [DOI] [PubMed] [Google Scholar]
  35. Jörnvall H., Persson B., Krook M., Atrian S., Gonzàlez-Duarte R., Jeffery J., Ghosh D. Short-chain dehydrogenases/reductases (SDR). Biochemistry. 1995 May 9;34(18):6003–6013. doi: 10.1021/bi00018a001. [DOI] [PubMed] [Google Scholar]
  36. Lapshina Elena A., Belyaeva Olga V., Chumakova Olga V., Kedishvili Natalia Y. Differential recognition of the free versus bound retinol by human microsomal retinol/sterol dehydrogenases: characterization of the holo-CRBP dehydrogenase activity of RoDH-4. Biochemistry. 2003 Jan 28;42(3):776–784. doi: 10.1021/bi026836r. [DOI] [PubMed] [Google Scholar]
  37. Manzano V. M., Muñoz J. C., Jiménez J. R., Puyol M. R., Puyol D. R., Kitamura M., Cazaña F. J. Human renal mesangial cells are a target for the anti-inflammatory action of 9-cis retinoic acid. Br J Pharmacol. 2000 Dec;131(8):1673–1683. doi: 10.1038/sj.bjp.0703728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Matsuura K., Deyashiki Y., Bunai Y., Ohya I., Hara A. Aldose reductase is a major reductase for isocaproaldehyde, a product of side-chain cleavage of cholesterol, in human and animal adrenal glands. Arch Biochem Biophys. 1996 Apr 15;328(2):265–271. doi: 10.1006/abbi.1996.0172. [DOI] [PubMed] [Google Scholar]
  39. Molotkov Andrei, Fan Xiaohong, Deltour Louise, Foglio Mario H., Martras Silvia, Farrés Jaume, Parés Xavier, Duester Gregg. Stimulation of retinoic acid production and growth by ubiquitously expressed alcohol dehydrogenase Adh3. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5337–5342. doi: 10.1073/pnas.082093299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Napoli J. L. Interactions of retinoid binding proteins and enzymes in retinoid metabolism. Biochim Biophys Acta. 1999 Sep 22;1440(2-3):139–162. doi: 10.1016/s1388-1981(99)00117-1. [DOI] [PubMed] [Google Scholar]
  41. Pailhoux E. A., Martinez A., Veyssiere G. M., Jean C. G. Androgen-dependent protein from mouse vas deferens. cDNA cloning and protein homology with the aldo-keto reductase superfamily. J Biol Chem. 1990 Nov 15;265(32):19932–19936. [PubMed] [Google Scholar]
  42. Parés X., Julià P. Isoenzymes of alcohol dehydrogenase in retinoid metabolism. Methods Enzymol. 1990;189:436–441. doi: 10.1016/0076-6879(90)89319-d. [DOI] [PubMed] [Google Scholar]
  43. Peralba J. M., Cederlund E., Crosas B., Moreno A., Julià P., Martínez S. E., Persson B., Farr s J., Parés X., Jörnvall H. Structural and enzymatic properties of a gastric NADP(H)- dependent and retinal-active alcohol dehydrogenase. J Biol Chem. 1999 Sep 10;274(37):26021–26026. doi: 10.1074/jbc.274.37.26021. [DOI] [PubMed] [Google Scholar]
  44. Rattner A., Smallwood P. M., Nathans J. Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol. J Biol Chem. 2000 Apr 14;275(15):11034–11043. doi: 10.1074/jbc.275.15.11034. [DOI] [PubMed] [Google Scholar]
  45. Rondeau J. M., Tête-Favier F., Podjarny A., Reymann J. M., Barth P., Biellmann J. F., Moras D. Novel NADPH-binding domain revealed by the crystal structure of aldose reductase. Nature. 1992 Jan 30;355(6359):469–472. doi: 10.1038/355469a0. [DOI] [PubMed] [Google Scholar]
  46. Scuric Z., Stain S. C., Anderson W. F., Hwang J. J. New member of aldose reductase family proteins overexpressed in human hepatocellular carcinoma. Hepatology. 1998 Apr;27(4):943–950. doi: 10.1002/hep.510270408. [DOI] [PubMed] [Google Scholar]
  47. Vander Jagt D. L., Kolb N. S., Vander Jagt T. J., Chino J., Martinez F. J., Hunsaker L. A., Royer R. E. Substrate specificity of human aldose reductase: identification of 4-hydroxynonenal as an endogenous substrate. Biochim Biophys Acta. 1995 Jun 12;1249(2):117–126. doi: 10.1016/0167-4838(95)00021-l. [DOI] [PubMed] [Google Scholar]
  48. Vander Jagt D. L., Robinson B., Taylor K. K., Hunsaker L. A. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. J Biol Chem. 1992 Mar 5;267(7):4364–4369. [PubMed] [Google Scholar]
  49. Wagner J., Dechow C., Morath C., Lehrke I., Amann K., Waldherr R., Floege J., Ritz E. Retinoic acid reduces glomerular injury in a rat model of glomerular damage. J Am Soc Nephrol. 2000 Aug;11(8):1479–1487. doi: 10.1681/ASN.V1181479. [DOI] [PubMed] [Google Scholar]
  50. Wermuth B., Bürgisser H., Bohren K., von Wartburg J. P. Purification and characterization of human-brain aldose reductase. Eur J Biochem. 1982 Oct;127(2):279–284. doi: 10.1111/j.1432-1033.1982.tb06867.x. [DOI] [PubMed] [Google Scholar]
  51. Yabe-Nishimura C. Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol Rev. 1998 Mar;50(1):21–33. [PubMed] [Google Scholar]
  52. Yang Z. N., Davis G. J., Hurley T. D., Stone C. L., Li T. K., Bosron W. F. Catalytic efficiency of human alcohol dehydrogenases for retinol oxidation and retinal reduction. Alcohol Clin Exp Res. 1994 Jun;18(3):587–591. doi: 10.1111/j.1530-0277.1994.tb00914.x. [DOI] [PubMed] [Google Scholar]
  53. Ye Q., Hyndman D., Green N., Li X., Korithoski B., Jia Z., Flynn T. G. Crystal structure of an aldehyde reductase Y50F mutant-NADP complex and its implications for substrate binding. Proteins. 2001 Jul 1;44(1):12–19. doi: 10.1002/prot.1066. [DOI] [PubMed] [Google Scholar]
  54. Zeindl-Eberhart E., Jungblut P. R., Otto A., Kerler R., Rabes H. M. Further characterization of a rat hepatoma-derived aldose-reductase-like protein--organ distribution and modulation in vitro. Eur J Biochem. 1997 Aug 1;247(3):792–800. doi: 10.1111/j.1432-1033.1997.t01-1-00792.x. [DOI] [PubMed] [Google Scholar]
  55. von Lintig J., Vogt K. Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving beta-carotene to retinal. J Biol Chem. 2000 Apr 21;275(16):11915–11920. doi: 10.1074/jbc.275.16.11915. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES