Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 1;373(Pt 3):785–792. doi: 10.1042/BJ20030359

Interaction of saposin D with membranes: effect of anionic phospholipids and sphingolipids.

Fiorella Ciaffoni 1, Massimo Tatti 1, Rosa Salvioli 1, Anna Maria Vaccaro 1
PMCID: PMC1223540  PMID: 12733985

Abstract

Saposin (Sap) D is an endolysosomal protein that, together with three other similar proteins, Sap A, Sap B and Sap C, is involved in the degradation of sphingolipids and, possibly, in the solubilization and transport of gangliosides. We found that Sap D is able to destabilize and disrupt membranes containing each of the three anionic phospholipids most abundant in the acidic endolysosomal compartment, namely lysobisphosphatidic acid (LBPA), phosphatidylinositol (PI) and phosphatidylserine (PS). The breakdown of the membranes, which occurs when the Sap D concentration on the lipid surface reaches a critical value, is a slow process that gives rise to small particles. The Sap D-particle complexes formed in an acidic milieu can be dissociated by an increase in pH, suggesting a dynamic association of Sap D with membranes. The presence of anionic phospholipids is required also for the Sap D-induced perturbation and solubilization of membranes containing a neutral sphingolipid such as ceramide or a ganglioside such as G(M1). At appropriate Sap D concentrations Cer and G(M1) are solubilized as constituents of small phospholipid particles. Our findings imply that most functions of Sap D are dependent on its interaction with anionic phospholipids, which mediate the Sap D effect on other components of the membrane such as sphingolipids. On consideration of the properties of Sap D we propose that Sap D might have a role in the definition of the structure and function of membranes, such as the intra-endolysosomal membranes, that are rich in anionic phospholipids.

Full Text

The Full Text of this article is available as a PDF (163.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Christomanou H., Chabás A., Pámpols T., Guardiola A. Activator protein deficient Gaucher's disease. A second patient with the newly identified lipid storage disorder. Klin Wochenschr. 1989 Oct 2;67(19):999–1003. doi: 10.1007/BF01716064. [DOI] [PubMed] [Google Scholar]
  2. Ciaffoni F., Salvioli R., Tatti M., Arancia G., Crateri P., Vaccaro A. M. Saposin D solubilizes anionic phospholipid-containing membranes. J Biol Chem. 2001 Jun 13;276(34):31583–31589. doi: 10.1074/jbc.M102736200. [DOI] [PubMed] [Google Scholar]
  3. Dempsey C. E. The actions of melittin on membranes. Biochim Biophys Acta. 1990 May 7;1031(2):143–161. doi: 10.1016/0304-4157(90)90006-x. [DOI] [PubMed] [Google Scholar]
  4. Fürst W., Sandhoff K. Activator proteins and topology of lysosomal sphingolipid catabolism. Biochim Biophys Acta. 1992 Jun 5;1126(1):1–16. doi: 10.1016/0005-2760(92)90210-m. [DOI] [PubMed] [Google Scholar]
  5. Ghidoni R., Tettamanti G., Zambotti V. An improved procedure for the in vitro labeling of ganglioside. Ital J Biochem. 1974 Sep-Oct;23(5):320–328. [PubMed] [Google Scholar]
  6. Gruenberg J. The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol. 2001 Oct;2(10):721–730. doi: 10.1038/35096054. [DOI] [PubMed] [Google Scholar]
  7. Harzer K., Paton B. C., Christomanou H., Chatelut M., Levade T., Hiraiwa M., O'Brien J. S. Saposins (sap) A and C activate the degradation of galactosylceramide in living cells. FEBS Lett. 1997 Nov 17;417(3):270–274. doi: 10.1016/s0014-5793(97)01302-1. [DOI] [PubMed] [Google Scholar]
  8. Hiraiwa M., Soeda S., Kishimoto Y., O'Brien J. S. Binding and transport of gangliosides by prosaposin. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11254–11258. doi: 10.1073/pnas.89.23.11254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hsueh Ya-Wei, Giles Ralph, Kitson Neil, Thewalt Jenifer. The effect of ceramide on phosphatidylcholine membranes: a deuterium NMR study. Biophys J. 2002 Jun;82(6):3089–3095. doi: 10.1016/S0006-3495(02)75650-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huang H. W., Goldberg E. M., Zidovetzki R. Ceramides modulate protein kinase C activity and perturb the structure of Phosphatidylcholine/Phosphatidylserine bilayers. Biophys J. 1999 Sep;77(3):1489–1497. doi: 10.1016/S0006-3495(99)76996-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huang H. W., Goldberg E. M., Zidovetzki R. Ceramides perturb the structure of phosphatidylcholine bilayers and modulate the activity of phospholipase A2. Eur Biophys J. 1998;27(4):361–366. doi: 10.1007/s002490050143. [DOI] [PubMed] [Google Scholar]
  12. Kishimoto Y., Hiraiwa M., O'Brien J. S. Saposins: structure, function, distribution, and molecular genetics. J Lipid Res. 1992 Sep;33(9):1255–1267. [PubMed] [Google Scholar]
  13. Klein A., Henseler M., Klein C., Suzuki K., Harzer K., Sandhoff K. Sphingolipid activator protein D (sap-D) stimulates the lysosomal degradation of ceramide in vivo. Biochem Biophys Res Commun. 1994 May 16;200(3):1440–1448. doi: 10.1006/bbrc.1994.1612. [DOI] [PubMed] [Google Scholar]
  14. Kobayashi T., Stang E., Fang K. S., de Moerloose P., Parton R. G., Gruenberg J. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature. 1998 Mar 12;392(6672):193–197. doi: 10.1038/32440. [DOI] [PubMed] [Google Scholar]
  15. Kobayashi Toshihide, Beuchat Marie-Hélène, Chevallier Julien, Makino Asami, Mayran Nathalie, Escola Jean-Michel, Lebrand Cecile, Cosson Pierre, Kobayashi Tetsuyuki, Gruenberg Jean. Separation and characterization of late endosomal membrane domains. J Biol Chem. 2002 Jun 13;277(35):32157–32164. doi: 10.1074/jbc.M202838200. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lefrancois Stephane, May Taymaa, Knight Casey, Bourbeau Danielle, Morales Carlos R. The lysosomal transport of prosaposin requires the conditional interaction of its highly conserved d domain with sphingomyelin. J Biol Chem. 2002 Feb 20;277(19):17188–17199. doi: 10.1074/jbc.M200343200. [DOI] [PubMed] [Google Scholar]
  18. Linke T., Wilkening G., Sadeghlar F., Mozcall H., Bernardo K., Schuchman E., Sandhoff K. Interfacial regulation of acid ceramidase activity. Stimulation of ceramide degradation by lysosomal lipids and sphingolipid activator proteins. J Biol Chem. 2000 Dec 4;276(8):5760–5768. doi: 10.1074/jbc.M006846200. [DOI] [PubMed] [Google Scholar]
  19. Matsuda J., Vanier M. T., Saito Y., Tohyama J., Suzuki K., Suzuki K. A mutation in the saposin A domain of the sphingolipid activator protein (prosaposin) gene results in a late-onset, chronic form of globoid cell leukodystrophy in the mouse. Hum Mol Genet. 2001 May 15;10(11):1191–1199. doi: 10.1093/hmg/10.11.1191. [DOI] [PubMed] [Google Scholar]
  20. O'Brien J. S., Kishimoto Y. Saposin proteins: structure, function, and role in human lysosomal storage disorders. FASEB J. 1991 Mar 1;5(3):301–308. doi: 10.1096/fasebj.5.3.2001789. [DOI] [PubMed] [Google Scholar]
  21. Pillay Ché S., Elliott Edith, Dennison Clive. Endolysosomal proteolysis and its regulation. Biochem J. 2002 May 1;363(Pt 3):417–429. doi: 10.1042/0264-6021:3630417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Qi X., Grabowski G. A. Differential membrane interactions of saposins A and C: implications for the functional specificity. J Biol Chem. 2001 May 16;276(29):27010–27017. doi: 10.1074/jbc.M101075200. [DOI] [PubMed] [Google Scholar]
  23. Salvioli R., Tatti M., Ciaffoni F., Vaccaro A. M. Further studies on the reconstitution of glucosylceramidase activity by Sap C and anionic phospholipids. FEBS Lett. 2000 Apr 21;472(1):17–21. doi: 10.1016/s0014-5793(00)01417-4. [DOI] [PubMed] [Google Scholar]
  24. Schlote W., Harzer K., Christomanou H., Paton B. C., Kustermann-Kuhn B., Schmid B., Seeger J., Beudt U., Schuster I., Langenbeck U. Sphingolipid activator protein 1 deficiency in metachromatic leucodystrophy with normal arylsulphatase A activity. A clinical, morphological, biochemical, and immunological study. Eur J Pediatr. 1991 Jun;150(8):584–591. doi: 10.1007/BF02072213. [DOI] [PubMed] [Google Scholar]
  25. Senisterra G., Epand R. M. Role of membrane defects in the regulation of the activity of protein kinase C. Arch Biochem Biophys. 1993 Jan;300(1):378–383. doi: 10.1006/abbi.1993.1051. [DOI] [PubMed] [Google Scholar]
  26. Soeda S., Hiraiwa M., O'Brien J. S., Kishimoto Y. Binding of cerebrosides and sulfatides to saposins A-D. J Biol Chem. 1993 Sep 5;268(25):18519–18523. [PubMed] [Google Scholar]
  27. Straubinger R. M., Hong K., Friend D. S., Papahadjopoulos D. Endocytosis of liposomes and intracellular fate of encapsulated molecules: encounter with a low pH compartment after internalization in coated vesicles. Cell. 1983 Apr;32(4):1069–1079. doi: 10.1016/0092-8674(83)90291-x. [DOI] [PubMed] [Google Scholar]
  28. Tatti M., Salvioli R., Ciaffoni F., Pucci P., Andolfo A., Amoresano A., Vaccaro A. M. Structural and membrane-binding properties of saposin D. Eur J Biochem. 1999 Jul;263(2):486–494. doi: 10.1046/j.1432-1327.1999.00521.x. [DOI] [PubMed] [Google Scholar]
  29. Vaccaro A. M., Ciaffoni F., Tatti M., Salvioli R., Barca A., Tognozzi D., Scerch C. pH-dependent conformational properties of saposins and their interactions with phospholipid membranes. J Biol Chem. 1995 Dec 22;270(51):30576–30580. doi: 10.1074/jbc.270.51.30576. [DOI] [PubMed] [Google Scholar]
  30. Vaccaro A. M., Salvioli R., Tatti M., Ciaffoni F. Saposins and their interaction with lipids. Neurochem Res. 1999 Feb;24(2):307–314. doi: 10.1023/a:1022530508763. [DOI] [PubMed] [Google Scholar]
  31. Vaccaro A. M., Tatti M., Ciaffoni F., Salvioli R., Barca A., Scerch C. Effect of saposins A and C on the enzymatic hydrolysis of liposomal glucosylceramide. J Biol Chem. 1997 Jul 4;272(27):16862–16867. doi: 10.1074/jbc.272.27.16862. [DOI] [PubMed] [Google Scholar]
  32. Vaccaro A. M., Tatti M., Ciaffoni F., Salvioli R., Maras B., Barca A. Function of saposin C in the reconstitution of glucosylceramidase by phosphatidylserine liposomes. FEBS Lett. 1993 Dec 20;336(1):159–162. doi: 10.1016/0014-5793(93)81631-9. [DOI] [PubMed] [Google Scholar]
  33. Veiga M. P., Arrondo J. L., Goñi F. M., Alonso A. Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases. Biophys J. 1999 Jan;76(1 Pt 1):342–350. doi: 10.1016/S0006-3495(99)77201-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wenger D. A., DeGala G., Williams C., Taylor H. A., Stevenson R. E., Pruitt J. R., Miller J., Garen P. D., Balentine J. D. Clinical, pathological, and biochemical studies on an infantile case of sulfatide/GM1 activator protein deficiency. Am J Med Genet. 1989 Jun;33(2):255–265. doi: 10.1002/ajmg.1320330223. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES