Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 1;373(Pt 3):981–986. doi: 10.1042/BJ20030438

S3 to S3' subsite specificity of recombinant human cathepsin K and development of selective internally quenched fluorescent substrates.

Marcio F M Alves 1, Luciano Puzer 1, Simone S Cotrin 1, Maria Aparecida Juliano 1, Luiz Juliano 1, Dieter Brömme 1, Adriana K Carmona 1
PMCID: PMC1223542  PMID: 12733990

Abstract

We have systematically examined the S3 to S3' subsite substrate specificity requirements of cathepsin K using internally quenched fluorescent peptides derived from the lead sequence Abz-KLRFSKQ-EDDnp [where Abz is o -aminobenzoic acid and EDDnp is N -(2,4-dinitrophenyl)ethylenediamine]. We assayed six series of peptides, in which each position except Gln was substituted with various natural amino acids. The results indicated that the S3-S1 subsite requirements are more restricted than those of S1'-S3'. Cathepsin K preferentially accommodates hydrophobic amino acids with aliphatic side chains (Leu, Ile and Val) in the S2 site. Modifications at P1 residues also have a large influence on cathepsin K activity. Positively charged residues (Arg and Lys) represent the best accepted amino acids in this position, although a particular preference for Gly was found as well. Subsite S3 accepted preferentially basic amino acids such as Lys and Arg. A broad range of amino acids was accommodated in the remaining subsites. We further explored the acceptance of a Pro residue in the P2 position by cathepsin K in order to develop specific substrates for the enzyme. Two series of peptides with the general sequences Abz-KXPGSKQ-EDDnp and Abz-KPXGSKQ-EDDnp (where X denotes the position of the amino acid that is altered) were synthesized. The substrates Abz-KPRGSKQ-EDDnp and Abz-KKPGSKQ-EDDnp were cleaved by cathepsin K at the Arg-Gly and Gly-Ser bonds respectively, and have been shown to be specific for cathepsin K when compared with other lysosomal cysteine proteases such as cathepsins L and B and with the aspartyl protease cathepsin D.

Full Text

The Full Text of this article is available as a PDF (106.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aibe K., Yazawa H., Abe K., Teramura K., Kumegawa M., Kawashima H., Honda K. Substrate specificity of recombinant osteoclast-specific cathepsin K from rabbits. Biol Pharm Bull. 1996 Aug;19(8):1026–1031. doi: 10.1248/bpb.19.1026. [DOI] [PubMed] [Google Scholar]
  2. Araujo M. C., Melo R. L., Cesari M. H., Juliano M. A., Juliano L., Carmona A. K. Peptidase specificity characterization of C- and N-terminal catalytic sites of angiotensin I-converting enzyme. Biochemistry. 2000 Jul 25;39(29):8519–8525. doi: 10.1021/bi9928905. [DOI] [PubMed] [Google Scholar]
  3. Atley L. M., Mort J. S., Lalumiere M., Eyre D. R. Proteolysis of human bone collagen by cathepsin K: characterization of the cleavage sites generating by cross-linked N-telopeptide neoepitope. Bone. 2000 Mar;26(3):241–247. doi: 10.1016/s8756-3282(99)00270-7. [DOI] [PubMed] [Google Scholar]
  4. Barrett A. J., Kembhavi A. A., Brown M. A., Kirschke H., Knight C. G., Tamai M., Hanada K. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J. 1982 Jan 1;201(1):189–198. doi: 10.1042/bj2010189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bossard M. J., Tomaszek T. A., Thompson S. K., Amegadzie B. Y., Hanning C. R., Jones C., Kurdyla J. T., McNulty D. E., Drake F. H., Gowen M. Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J Biol Chem. 1996 May 24;271(21):12517–12524. doi: 10.1074/jbc.271.21.12517. [DOI] [PubMed] [Google Scholar]
  6. Brömme D., Okamoto K. Human cathepsin O2, a novel cysteine protease highly expressed in osteoclastomas and ovary molecular cloning, sequencing and tissue distribution. Biol Chem Hoppe Seyler. 1995 Jun;376(6):379–384. doi: 10.1515/bchm3.1995.376.6.379. [DOI] [PubMed] [Google Scholar]
  7. Bühling F., Fengler A., Brandt W., Welte T., Ansorge S., Nägler D. K. Review: novel cysteine proteases of the papain family. Adv Exp Med Biol. 2000;477:241–254. doi: 10.1007/0-306-46826-3_26. [DOI] [PubMed] [Google Scholar]
  8. Bühling F., Gerber A., Häckel C., Krüger S., Köhnlein T., Brömme D., Reinhold D., Ansorge S., Welte T. Expression of cathepsin K in lung epithelial cells. Am J Respir Cell Mol Biol. 1999 Apr;20(4):612–619. doi: 10.1165/ajrcmb.20.4.3405. [DOI] [PubMed] [Google Scholar]
  9. Cezari Maria Helena S., Puzer Luciano, Juliano Maria Aparecida, Carmona Adriana K., Juliano Luiz. Cathepsin B carboxydipeptidase specificity analysis using internally quenched fluorescent peptides. Biochem J. 2002 Nov 15;368(Pt 1):365–369. doi: 10.1042/BJ20020840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Del Nery E., Alves L. C., Melo R. L., Cesari M. H., Juliano L., Juliano M. A. Specificity of cathepsin B to fluorescent substrates containing benzyl side-chain-substituted amino acids at P1 subsite. J Protein Chem. 2000 Jan;19(1):33–38. doi: 10.1023/a:1007090708945. [DOI] [PubMed] [Google Scholar]
  11. Desmazes Claire, Galineau Laurent, Gauthier Francis, Brömme Dieter, Lalmanach Gilles. Kininogen-derived peptides for investigating the putative vasoactive properties of human cathepsins K and L. Eur J Biochem. 2003 Jan;270(1):171–178. doi: 10.1046/j.1432-1033.2003.03382.x. [DOI] [PubMed] [Google Scholar]
  12. Drake F. H., Dodds R. A., James I. E., Connor J. R., Debouck C., Richardson S., Lee-Rykaczewski E., Coleman L., Rieman D., Barthlow R. Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem. 1996 May 24;271(21):12511–12516. doi: 10.1074/jbc.271.21.12511. [DOI] [PubMed] [Google Scholar]
  13. Garnero P., Borel O., Byrjalsen I., Ferreras M., Drake F. H., McQueney M. S., Foged N. T., Delmas P. D., Delaissé J. M. The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem. 1998 Nov 27;273(48):32347–32352. doi: 10.1074/jbc.273.48.32347. [DOI] [PubMed] [Google Scholar]
  14. Gelb B. D., Shi G. P., Chapman H. A., Desnick R. J. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996 Aug 30;273(5279):1236–1238. doi: 10.1126/science.273.5279.1236. [DOI] [PubMed] [Google Scholar]
  15. Haeckel C., Krueger S., Buehling F., Broemme D., Franke K., Schuetze A., Roese I., Roessner A. Expression of cathepsin K in the human embryo and fetus. Dev Dyn. 1999 Oct;216(2):89–95. doi: 10.1002/(SICI)1097-0177(199910)216:2<89::AID-DVDY1>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  16. Kafienah W., Brömme D., Buttle D. J., Croucher L. J., Hollander A. P. Human cathepsin K cleaves native type I and II collagens at the N-terminal end of the triple helix. Biochem J. 1998 May 1;331(Pt 3):727–732. doi: 10.1042/bj3310727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Krupa J. C., Mort J. S. Optimization of detergents for the assay of cathepsins B, L, S, and K. Anal Biochem. 2000 Jul 15;283(1):99–103. doi: 10.1006/abio.2000.4621. [DOI] [PubMed] [Google Scholar]
  18. Lecaille Fabien, Choe Youngchool, Brandt Wolfgang, Li Zhenqiang, Craik Charles S., Brömme Dieter. Selective inhibition of the collagenolytic activity of human cathepsin K by altering its S2 subsite specificity. Biochemistry. 2002 Jul 2;41(26):8447–8454. doi: 10.1021/bi025638x. [DOI] [PubMed] [Google Scholar]
  19. Lecaille Fabien, Kaleta Jadwiga, Brömme Dieter. Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev. 2002 Dec;102(12):4459–4488. doi: 10.1021/cr0101656. [DOI] [PubMed] [Google Scholar]
  20. Li Zhenqiang, Hou Wu-Shiun, Escalante-Torres Carlos R., Gelb Bruce D., Bromme Dieter. Collagenase activity of cathepsin K depends on complex formation with chondroitin sulfate. J Biol Chem. 2002 May 30;277(32):28669–28676. doi: 10.1074/jbc.M204004200. [DOI] [PubMed] [Google Scholar]
  21. Linnevers C. J., McGrath M. E., Armstrong R., Mistry F. R., Barnes M. G., Klaus J. L., Palmer J. T., Katz B. A., Brömme D. Expression of human cathepsin K in Pichia pastoris and preliminary crystallographic studies of an inhibitor complex. Protein Sci. 1997 Apr;6(4):919–921. doi: 10.1002/pro.5560060421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Melo R. L., Barbosa Pozzo R. C., Alves L. C., Perissutti E., Caliendo G., Santagada V., Juliano L., Juliano M. A. Synthesis and hydrolysis by cathepsin B of fluorogenic substrates with the general structure benzoyl-X-ARG-MCA containing non-natural basic amino acids at position X. Biochim Biophys Acta. 2001 May 5;1547(1):82–94. doi: 10.1016/s0167-4838(01)00171-6. [DOI] [PubMed] [Google Scholar]
  23. Ménard R., Carmona E., Plouffe C., Brömme D., Konishi Y., Lefebvre J., Storer A. C. The specificity of the S1' subsite of cysteine proteases. FEBS Lett. 1993 Aug 9;328(1-2):107–110. doi: 10.1016/0014-5793(93)80975-z. [DOI] [PubMed] [Google Scholar]
  24. Nery E. D., Juliano M. A., Meldal M., Svendsen I., Scharfstein J., Walmsley A., Juliano L. Characterization of the substrate specificity of the major cysteine protease (cruzipain) from Trypanosoma cruzi using a portion-mixing combinatorial library and fluorogenic peptides. Biochem J. 1997 Apr 15;323(Pt 2):427–433. doi: 10.1042/bj3230427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nägler D. K., Storer A. C., Portaro F. C., Carmona E., Juliano L., Ménard R. Major increase in endopeptidase activity of human cathepsin B upon removal of occluding loop contacts. Biochemistry. 1997 Oct 14;36(41):12608–12615. doi: 10.1021/bi971264+. [DOI] [PubMed] [Google Scholar]
  26. Pauly Thomas A., Sulea Traian, Ammirati Mark, Sivaraman J., Danley Dennis E., Griffor Matthew C., Kamath Ajith V., Wang I-K, Laird Ellen R., Seddon Andrew P. Specificity determinants of human cathepsin s revealed by crystal structures of complexes. Biochemistry. 2003 Mar 25;42(11):3203–3213. doi: 10.1021/bi027308i. [DOI] [PubMed] [Google Scholar]
  27. Portaro F. C., Santos A. B., Cezari M. H., Juliano M. A., Juliano L., Carmona E. Probing the specificity of cysteine proteinases at subsites remote from the active site: analysis of P4, P3, P2' and P3' variations in extended substrates. Biochem J. 2000 Apr 1;347(Pt 1):123–129. [PMC free article] [PubMed] [Google Scholar]
  28. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  29. St Hilaire P. M., Alves L. C., Sanderson S. J., Mottram J. C., Juliano M. A., Juliano L., Coombs G. H., Meldal M. The substrate specificity of a recombinant cysteine protease from Leishmania mexicana: application of a combinatorial peptide library approach. Chembiochem. 2000 Aug 18;1(2):115–122. doi: 10.1002/1439-7633(20000818)1:2<115::aid-cbic115>3.3.co;2-#. [DOI] [PubMed] [Google Scholar]
  30. Tezuka K., Tezuka Y., Maejima A., Sato T., Nemoto K., Kamioka H., Hakeda Y., Kumegawa M. Molecular cloning of a possible cysteine proteinase predominantly expressed in osteoclasts. J Biol Chem. 1994 Jan 14;269(2):1106–1109. [PubMed] [Google Scholar]
  31. Turk B., Turk D., Turk V. Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta. 2000 Mar 7;1477(1-2):98–111. doi: 10.1016/s0167-4838(99)00263-0. [DOI] [PubMed] [Google Scholar]
  32. Turk D., Guncar G., Podobnik M., Turk B. Revised definition of substrate binding sites of papain-like cysteine proteases. Biol Chem. 1998 Feb;379(2):137–147. doi: 10.1515/bchm.1998.379.2.137. [DOI] [PubMed] [Google Scholar]
  33. Xia L., Kilb J., Wex H., Li Z., Lipyansky A., Breuil V., Stein L., Palmer J. T., Dempster D. W., Brömme D. Localization of rat cathepsin K in osteoclasts and resorption pits: inhibition of bone resorption and cathepsin K-activity by peptidyl vinyl sulfones. Biol Chem. 1999 Jun;380(6):679–687. doi: 10.1515/BC.1999.084. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES