Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 1;373(Pt 3):987–992. doi: 10.1042/BJ20021453

Regioselectivity of glucosylation of caffeic acid by a UDP-glucose:glucosyltransferase is maintained in planta.

Eng-Kiat Lim 1, Gillian S Higgins 1, Yi Li 1, Dianna J Bowles 1
PMCID: PMC1223554  PMID: 12741958

Abstract

Caffeic acid is a phenylpropanoid playing an important role in the pathways leading to lignin synthesis and the production of a wide variety of secondary metabolites. The compound is also an antioxidant and has potential utility as a general protectant against free radicals. Three glucosylated forms of caffeic acid are known to exist: the 3- O - and 4- O -glucosides and the glucose ester. This study describes for the first time a glucosyltransferase [UDP-glucose:glucosyltransferase (UGT)] that is specific for the 3-hydroxyl, and not the 4-hydroxyl, position of caffeic acid. The UGT sequence of Arabidopsis, UGT71C1, has been expressed as a recombinant fusion protein in Escherichia coli, purified and assayed against a range of substrates in vitro. The assay confirmed that caffeic acid as the preferred substrate when compared with other hydroxycinnamates, although UGT71C1 also exhibited substantial activity towards flavonoid substrates, known to have structural features that can be recognized by many different UGTs. The expression of UGT71C1 in transgenic Arabidopsis was driven by the constitutive cauliflower mosaic virus 35 S (CaMV35S) promoter. Nine independent transgenic lines were taken to homozygosity and characterized by Northern-blot analysis, assay of enzyme activity in leaf extracts and HPLC analysis of the glucosides. The level of expression of UGT71C1 was enhanced considerably in several lines, leading to a higher level of the corresponding enzyme activity and a higher level of caffeoyl-3- O -glucoside. The data are discussed in the context of the utility of UGTs for natural product biotransformations.

Full Text

The Full Text of this article is available as a PDF (162.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boot J. R., Kitchen E. A., Walker J. R., Harvey J., Dawson W. Directional movement of cells in vivo and in vitro under the influence of 5-lipoxygenase inhibitors. Br J Dermatol. 1985 Jul;113 (Suppl 28):168–176. doi: 10.1111/j.1365-2133.1985.tb15648.x. [DOI] [PubMed] [Google Scholar]
  2. Chen J. H., Shao Y., Huang M. T., Chin C. K., Ho C. T. Inhibitory effect of caffeic acid phenethyl ester on human leukemia HL-60 cells. Cancer Lett. 1996 Nov 29;108(2):211–214. doi: 10.1016/s0304-3835(96)04425-4. [DOI] [PubMed] [Google Scholar]
  3. Flitsch S. L. Chemical and enzymatic synthesis of glycopolymers. Curr Opin Chem Biol. 2000 Dec;4(6):619–625. doi: 10.1016/s1367-5931(00)00152-6. [DOI] [PubMed] [Google Scholar]
  4. Guo D., Chen F., Inoue K., Blount J. W., Dixon R. A. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa. impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell. 2001 Jan;13(1):73–88. doi: 10.1105/tpc.13.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HARBORNE J. B., CORNER J. J. Plant polyphenols. 4. Hydroxycinnamic acid-sugar derivatives. Biochem J. 1961 Nov;81:242–250. doi: 10.1042/bj0810242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Humphreys John M., Chapple Clint. Rewriting the lignin roadmap. Curr Opin Plant Biol. 2002 Jun;5(3):224–229. doi: 10.1016/s1369-5266(02)00257-1. [DOI] [PubMed] [Google Scholar]
  7. Iwahashi H., Ishii T., Sugata R., Kido R. The effects of caffeic acid and its related catechols on hydroxyl radical formation by 3-hydroxyanthranilic acid, ferric chloride, and hydrogen peroxide. Arch Biochem Biophys. 1990 Jan;276(1):242–247. doi: 10.1016/0003-9861(90)90033-u. [DOI] [PubMed] [Google Scholar]
  8. Jackson R. G., Lim E. K., Li Y., Kowalczyk M., Sandberg G., Hoggett J., Ashford D. A., Bowles D. J. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. J Biol Chem. 2000 Oct 20;276(6):4350–4356. doi: 10.1074/jbc.M006185200. [DOI] [PubMed] [Google Scholar]
  9. Laranjinha J., Cadenas E. Redox cycles of caffeic acid, alpha-tocopherol, and ascorbate: implications for protection of low-density lipoproteins against oxidation. IUBMB Life. 1999 Jul;48(1):57–65. doi: 10.1080/713803474. [DOI] [PubMed] [Google Scholar]
  10. Li X. C., elSohly H. N., Clark A. M. 7-Caffeoylsedoheptulose from Nyssa sylvatica. Phytochemistry. 2000 Apr;53(8):1033–1037. doi: 10.1016/s0031-9422(99)00435-5. [DOI] [PubMed] [Google Scholar]
  11. Li Y., Baldauf S., Lim E. K., Bowles D. J. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol Chem. 2000 Oct 20;276(6):4338–4343. doi: 10.1074/jbc.M007447200. [DOI] [PubMed] [Google Scholar]
  12. Lim E. K., Li Y., Parr A., Jackson R., Ashford D. A., Bowles D. J. Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. J Biol Chem. 2000 Oct 20;276(6):4344–4349. doi: 10.1074/jbc.M007263200. [DOI] [PubMed] [Google Scholar]
  13. Lim E. K., Roberts M. R., Bowles D. J. Biochemical characterization of tomato annexin p35. Independence of calcium binding and phosphatase activities. J Biol Chem. 1998 Dec 25;273(52):34920–34925. doi: 10.1074/jbc.273.52.34920. [DOI] [PubMed] [Google Scholar]
  14. Lim Eng-Kiat, Doucet Charlotte J., Li Yi, Elias Luisa, Worrall Dawn, Spencer Steven P., Ross Joe, Bowles Dianna J. The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J Biol Chem. 2001 Oct 18;277(1):586–592. doi: 10.1074/jbc.M109287200. [DOI] [PubMed] [Google Scholar]
  15. Muriel P. High fat diet and liver damage induced by biliary obstruction in the rat. J Appl Toxicol. 1995 Mar-Apr;15(2):125–128. doi: 10.1002/jat.2550150211. [DOI] [PubMed] [Google Scholar]
  16. Nardini M., Natella F., Gentili V., Di Felice M., Scaccini C. Effect of caffeic acid dietary supplementation on the antioxidant defense system in rat: an in vivo study. Arch Biochem Biophys. 1997 Jun 1;342(1):157–160. doi: 10.1006/abbi.1997.9977. [DOI] [PubMed] [Google Scholar]
  17. Suryaprakash P., Kumar R. P., Prakash V. Thermodynamics of interaction of caffeic acid and quinic acid with multisubunit proteins. Int J Biol Macromol. 2000 Jun 13;27(3):219–228. doi: 10.1016/s0141-8130(00)00119-7. [DOI] [PubMed] [Google Scholar]
  18. Verpoorte R., Memelink J. Engineering secondary metabolite production in plants. Curr Opin Biotechnol. 2002 Apr;13(2):181–187. doi: 10.1016/s0958-1669(02)00308-7. [DOI] [PubMed] [Google Scholar]
  19. Verwoerd T. C., Dekker B. M., Hoekema A. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 1989 Mar 25;17(6):2362–2362. doi: 10.1093/nar/17.6.2362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Whetten Ross W., MacKay John J., Sederoff Ronald R. RECENT ADVANCES IN UNDERSTANDING LIGNIN BIOSYNTHESIS. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):585–609. doi: 10.1146/annurev.arplant.49.1.585. [DOI] [PubMed] [Google Scholar]
  21. Wong H. C., Hu C. A., Yeh H. L., Su W., Lu H. C., Lin C. F. Production, Purification, and Characterization of alpha-Galactosidase from Monascus pilosus. Appl Environ Microbiol. 1986 Nov;52(5):1147–1152. doi: 10.1128/aem.52.5.1147-1152.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yamamoto H., Inoue K., Yazaki K. Caffeic acid oligomers in Lithospermum erythrorhizon cell suspension cultures. Phytochemistry. 2000 Mar;53(6):651–657. doi: 10.1016/s0031-9422(99)00623-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES