Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 1;373(Pt 3):689–702. doi: 10.1042/BJ20030390

Mouse matriptase-2: identification, characterization and comparative mRNA expression analysis with mouse hepsin in adult and embryonic tissues.

John D Hooper 1, Luisa Campagnolo 1, Goodarz Goodarzi 1, Tony N Truong 1, Heidi Stuhlmann 1, James P Quigley 1
PMCID: PMC1223555  PMID: 12744720

Abstract

We report the identification and characterization of mouse matriptase-2 (m-matriptase-2), an 811-amino-acid protein composed of an N-terminal cytoplasmic domain, a membrane-spanning domain, two CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains, three LDLR (low-density-lipoprotein receptor class A) domains and a C-terminal serine-protease domain. All m-matriptase-2 protein domain boundaries corresponded with intron/exon junctions of the encoding gene, which spans approx. 29 kb and comprises 18 exons. Matriptase-2 is highly conserved in human, mouse and rat, with the rat matriptase-2 gene ( r-maltriptase-2 ) predicted to encode transmembrane and soluble isoforms. Western-blot analysis indicated that m-matriptase-2 migrates close to its theoretical molecular mass of 91 kDa, and immunofluorescence analysis was consistent with the proposed surface membrane localization of this protein. Reverse-transcription PCR and in-situ -hybridization analysis indicated that m-matriptase-2 expression overlaps with the distribution of mouse hepsin (m-hepsin, a cell-surface serine protease identified in hepatoma cells) in adult tissues and during embryonic development. In adult tissues both are expressed at highest levels in liver, kidney and uterus. During embryogenesis m-matriptase-2 expression peaked between days 12.5 and 15.5. m-hepsin expression was biphasic, with peaks at day 7.5 to 8.5 and again between days 12.5 and 15.5. In situ hybridization of embryonic tissues indicated abundant expression of both m-matriptase-2 and m-hepsin in the developing liver and at lower levels in developing pharyngo-tympanic tubes. While m-hepsin was detected in the residual embryonic yolk sac and with lower intensity in lung, heart, gastrointestinal tract, developing kidney tubules and epithelium of the oral cavity, m-matriptase-2 was absent in these tissues, but strongly expressed within the nasal cavity by olfactory epithelial cells. Mechanistic insight into the potential role of this new transmembrane serine protease is provided by its novel expression profile in embryonic and adult mouse.

Full Text

The Full Text of this article is available as a PDF (666.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afar D. E., Vivanco I., Hubert R. S., Kuo J., Chen E., Saffran D. C., Raitano A. B., Jakobovits A. Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res. 2001 Feb 15;61(4):1686–1692. [PubMed] [Google Scholar]
  2. Blom N., Gammeltoft S., Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol. 1999 Dec 17;294(5):1351–1362. doi: 10.1006/jmbi.1999.3310. [DOI] [PubMed] [Google Scholar]
  3. Cho E. G., Kim M. G., Kim C., Kim S. R., Seong I. S., Chung C., Schwartz R. H., Park D. N-terminal processing is essential for release of epithin, a mouse type II membrane serine protease. J Biol Chem. 2001 Sep 20;276(48):44581–44589. doi: 10.1074/jbc.M107059200. [DOI] [PubMed] [Google Scholar]
  4. Dhanasekaran S. M., Barrette T. R., Ghosh D., Shah R., Varambally S., Kurachi K., Pienta K. J., Rubin M. A., Chinnaiyan A. M. Delineation of prognostic biomarkers in prostate cancer. Nature. 2001 Aug 23;412(6849):822–826. doi: 10.1038/35090585. [DOI] [PubMed] [Google Scholar]
  5. Ernst Thomas, Hergenhahn Manfred, Kenzelmann Marc, Cohen Clemens D., Bonrouhi Mahnaz, Weninger Annette, Klären Ralf, Gröne Elisabeth F., Wiesel Manfred, Güdemann Christof. Decrease and gain of gene expression are equally discriminatory markers for prostate carcinoma: a gene expression analysis on total and microdissected prostate tissue. Am J Pathol. 2002 Jun;160(6):2169–2180. doi: 10.1016/S0002-9440(10)61165-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Falquet Laurent, Pagni Marco, Bucher Philipp, Hulo Nicolas, Sigrist Christian J. A., Hofmann Kay, Bairoch Amos. The PROSITE database, its status in 2002. Nucleic Acids Res. 2002 Jan 1;30(1):235–238. doi: 10.1093/nar/30.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fonseca P., Light A. The purification and characterization of bovine enterokinase from membrane fragments in the duodenal mucosal fluid. J Biol Chem. 1983 Dec 10;258(23):14516–14520. [PubMed] [Google Scholar]
  8. Friedrich Rainer, Fuentes-Prior Pablo, Ong Edgar, Coombs Gary, Hunter Michael, Oehler Ryan, Pierson Diane, Gonzalez Richard, Huber Robert, Bode Wolfram. Catalytic domain structures of MT-SP1/matriptase, a matrix-degrading transmembrane serine proteinase. J Biol Chem. 2001 Nov 5;277(3):2160–2168. doi: 10.1074/jbc.M109830200. [DOI] [PubMed] [Google Scholar]
  9. Holzinger Andreas, Maier Esther M., Bück Cornelius, Mayerhofer Peter U., Kappler Matthias, Haworth James C., Moroz Stanley P., Hadorn Hans-Beat, Sadler J. Evan, Roscher Adelbert A. Mutations in the proenteropeptidase gene are the molecular cause of congenital enteropeptidase deficiency. Am J Hum Genet. 2001 Nov 21;70(1):20–25. doi: 10.1086/338456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hooper J. D., Clements J. A., Quigley J. P., Antalis T. M. Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem. 2001 Jan 12;276(2):857–860. doi: 10.1074/jbc.R000020200. [DOI] [PubMed] [Google Scholar]
  11. Hooper J. D., Scarman A. L., Clarke B. E., Normyle J. F., Antalis T. M. Localization of the mosaic transmembrane serine protease corin to heart myocytes. Eur J Biochem. 2000 Dec;267(23):6931–6937. doi: 10.1046/j.1432-1033.2000.01806.x. [DOI] [PubMed] [Google Scholar]
  12. Jacquinet E., Rao N. V., Rao G. V., Hoidal J. R. Cloning, genomic organization, chromosomal assignment and expression of a novel mosaic serine proteinase: epitheliasin. FEBS Lett. 2000 Feb 18;468(1):93–100. doi: 10.1016/s0014-5793(00)01196-0. [DOI] [PubMed] [Google Scholar]
  13. Kawamura S., Kurachi S., Deyashiki Y., Kurachi K. Complete nucleotide sequence, origin of isoform and functional characterization of the mouse hepsin gene. Eur J Biochem. 1999 Jun;262(3):755–764. doi: 10.1046/j.1432-1327.1999.00431.x. [DOI] [PubMed] [Google Scholar]
  14. Kazama Y., Hamamoto T., Foster D. C., Kisiel W. Hepsin, a putative membrane-associated serine protease, activates human factor VII and initiates a pathway of blood coagulation on the cell surface leading to thrombin formation. J Biol Chem. 1995 Jan 6;270(1):66–72. doi: 10.1074/jbc.270.1.66. [DOI] [PubMed] [Google Scholar]
  15. Kim D. R., Sharmin S., Inoue M., Kido H. Cloning and expression of novel mosaic serine proteases with and without a transmembrane domain from human lung. Biochim Biophys Acta. 2001 Mar 19;1518(1-2):204–209. doi: 10.1016/s0167-4781(01)00184-1. [DOI] [PubMed] [Google Scholar]
  16. Kim M. G., Chen C., Lyu M. S., Cho E. G., Park D., Kozak C., Schwartz R. H. Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains. Immunogenetics. 1999 May;49(5):420–428. doi: 10.1007/s002510050515. [DOI] [PubMed] [Google Scholar]
  17. Kitamoto Y., Veile R. A., Donis-Keller H., Sadler J. E. cDNA sequence and chromosomal localization of human enterokinase, the proteolytic activator of trypsinogen. Biochemistry. 1995 Apr 11;34(14):4562–4568. doi: 10.1021/bi00014a008. [DOI] [PubMed] [Google Scholar]
  18. Lang J. C., Schuller D. E. Differential expression of a novel serine protease homologue in squamous cell carcinoma of the head and neck. Br J Cancer. 2001 Jan;84(2):237–243. doi: 10.1054/bjoc.2000.1586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee S. L., Dickson R. B., Lin C. Y. Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem. 2000 Nov 24;275(47):36720–36725. doi: 10.1074/jbc.M007802200. [DOI] [PubMed] [Google Scholar]
  20. Lin C. Y., Anders J., Johnson M., Dickson R. B. Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. J Biol Chem. 1999 Jun 25;274(26):18237–18242. doi: 10.1074/jbc.274.26.18237. [DOI] [PubMed] [Google Scholar]
  21. Lin C. Y., Anders J., Johnson M., Sang Q. A., Dickson R. B. Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J Biol Chem. 1999 Jun 25;274(26):18231–18236. doi: 10.1074/jbc.274.26.18231. [DOI] [PubMed] [Google Scholar]
  22. Lin C. Y., Wang J. K., Torri J., Dou L., Sang Q. A., Dickson R. B. Characterization of a novel, membrane-bound, 80-kDa matrix-degrading protease from human breast cancer cells. Monoclonal antibody production, isolation, and localization. J Biol Chem. 1997 Apr 4;272(14):9147–9152. [PubMed] [Google Scholar]
  23. List Karin, Haudenschild Christian C., Szabo Roman, Chen WanJun, Wahl Sharon M., Swaim William, Engelholm Lars H., Behrendt Niels, Bugge Thomas H. Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene. 2002 May 23;21(23):3765–3779. doi: 10.1038/sj.onc.1205502. [DOI] [PubMed] [Google Scholar]
  24. Luo J., Duggan D. J., Chen Y., Sauvageot J., Ewing C. M., Bittner M. L., Trent J. M., Isaacs W. B. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res. 2001 Jun 15;61(12):4683–4688. [PubMed] [Google Scholar]
  25. Magee J. A., Araki T., Patil S., Ehrig T., True L., Humphrey P. A., Catalona W. J., Watson M. A., Milbrandt J. Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res. 2001 Aug 1;61(15):5692–5696. [PubMed] [Google Scholar]
  26. Nakai K., Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992 Dec;14(4):897–911. doi: 10.1016/S0888-7543(05)80111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Netzel-Arnett Sarah, Hooper John D., Szabo Roman, Madison Edwin L., Quigley James P., Bugge Thomas H., Antalis Toni M. Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev. 2003 Jun-Sep;22(2-3):237–258. doi: 10.1023/a:1023003616848. [DOI] [PubMed] [Google Scholar]
  28. Oberst M., Anders J., Xie B., Singh B., Ossandon M., Johnson M., Dickson R. B., Lin C. Y. Matriptase and HAI-1 are expressed by normal and malignant epithelial cells in vitro and in vivo. Am J Pathol. 2001 Apr;158(4):1301–1311. doi: 10.1016/S0002-9440(10)64081-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oberst Michael D., Johnson Michael D., Dickson Robert B., Lin Chen-Yong, Singh Baljit, Stewart Moira, Williams Alastair, al-Nafussi Awatif, Smyth John F., Gabra Hani. Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopathological parameters. Clin Cancer Res. 2002 Apr;8(4):1101–1107. [PubMed] [Google Scholar]
  30. Pan Junliang, Hinzmann Bernd, Yan Wei, Wu Faye, Morser John, Wu Qingyu. Genomic structures of the human and murine corin genes and functional GATA elements in their promoters. J Biol Chem. 2002 Aug 1;277(41):38390–38398. doi: 10.1074/jbc.M205686200. [DOI] [PubMed] [Google Scholar]
  31. Paoloni-Giacobino A., Chen H., Peitsch M. C., Rossier C., Antonarakis S. E. Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. Genomics. 1997 Sep 15;44(3):309–320. doi: 10.1006/geno.1997.4845. [DOI] [PubMed] [Google Scholar]
  32. Rudenko Gabby, Henry Lisa, Henderson Keith, Ichtchenko Konstantin, Brown Michael S., Goldstein Joseph L., Deisenhofer Johann. Structure of the LDL receptor extracellular domain at endosomal pH. Science. 2002 Nov 29;298(5602):2353–2358. doi: 10.1126/science.1078124. [DOI] [PubMed] [Google Scholar]
  33. Sassoon D., Rosenthal N. Detection of messenger RNA by in situ hybridization. Methods Enzymol. 1993;225:384–404. doi: 10.1016/0076-6879(93)25027-y. [DOI] [PubMed] [Google Scholar]
  34. Schultz J., Milpetz F., Bork P., Ponting C. P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A. 1998 May 26;95(11):5857–5864. doi: 10.1073/pnas.95.11.5857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Scott H. S., Kudoh J., Wattenhofer M., Shibuya K., Berry A., Chrast R., Guipponi M., Wang J., Kawasaki K., Asakawa S. Insertion of beta-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness. Nat Genet. 2001 Jan;27(1):59–63. doi: 10.1038/83768. [DOI] [PubMed] [Google Scholar]
  36. Shapiro M. B., Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987 Sep 11;15(17):7155–7174. doi: 10.1093/nar/15.17.7155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stamey T. A., Warrington J. A., Caldwell M. C., Chen Z., Fan Z., Mahadevappa M., McNeal J. E., Nolley R., Zhang Z. Molecular genetic profiling of Gleason grade 4/5 prostate cancers compared to benign prostatic hyperplasia. J Urol. 2001 Dec;166(6):2171–2177. [PubMed] [Google Scholar]
  38. Takeuchi T., Harris J. L., Huang W., Yan K. W., Coughlin S. R., Craik C. S. Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem. 2000 Aug 25;275(34):26333–26342. doi: 10.1074/jbc.M002941200. [DOI] [PubMed] [Google Scholar]
  39. Takeuchi T., Shuman M. A., Craik C. S. Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11054–11061. doi: 10.1073/pnas.96.20.11054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tanimoto H., Underwood L. J., Wang Y., Shigemasa K., Parmley T. H., O'Brien T. J. Ovarian tumor cells express a transmembrane serine protease: a potential candidate for early diagnosis and therapeutic intervention. Tumour Biol. 2001 Mar-Apr;22(2):104–114. doi: 10.1159/000050604. [DOI] [PubMed] [Google Scholar]
  41. Tomita Y., Kim D. H., Magoori K., Fujino T., Yamamoto T. T. A novel low-density lipoprotein receptor-related protein with type II membrane protein-like structure is abundant in heart. J Biochem. 1998 Oct;124(4):784–789. doi: 10.1093/oxfordjournals.jbchem.a022180. [DOI] [PubMed] [Google Scholar]
  42. Torres-Rosado A., O'Shea K. S., Tsuji A., Chou S. H., Kurachi K. Hepsin, a putative cell-surface serine protease, is required for mammalian cell growth. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7181–7185. doi: 10.1073/pnas.90.15.7181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tsuji A., Torres-Rosado A., Arai T., Le Beau M. M., Lemons R. S., Chou S. H., Kurachi K. Hepsin, a cell membrane-associated protease. Characterization, tissue distribution, and gene localization. J Biol Chem. 1991 Sep 5;266(25):16948–16953. [PubMed] [Google Scholar]
  44. Varela P. F., Romero A., Sanz L., Romão M. J., Töpfer-Petersen E., Calvete J. J. The 2.4 A resolution crystal structure of boar seminal plasma PSP-I/PSP-II: a zona pellucida-binding glycoprotein heterodimer of the spermadhesin family built by a CUB domain architecture. J Mol Biol. 1997 Dec 12;274(4):635–649. doi: 10.1006/jmbi.1997.1424. [DOI] [PubMed] [Google Scholar]
  45. Velasco Gloria, Cal Santiago, Quesada Victor, Sánchez Luis M., López-Otín Carlos. Matriptase-2, a membrane-bound mosaic serine proteinase predominantly expressed in human liver and showing degrading activity against extracellular matrix proteins. J Biol Chem. 2002 Jul 30;277(40):37637–37646. doi: 10.1074/jbc.M203007200. [DOI] [PubMed] [Google Scholar]
  46. Vu T. K., Liu R. W., Haaksma C. J., Tomasek J. J., Howard E. W. Identification and cloning of the membrane-associated serine protease, hepsin, from mouse preimplantation embryos. J Biol Chem. 1997 Dec 12;272(50):31315–31320. doi: 10.1074/jbc.272.50.31315. [DOI] [PubMed] [Google Scholar]
  47. Wallrapp C., Hähnel S., Müller-Pillasch F., Burghardt B., Iwamura T., Ruthenbürger M., Lerch M. M., Adler G., Gress T. M. A novel transmembrane serine protease (TMPRSS3) overexpressed in pancreatic cancer. Cancer Res. 2000 May 15;60(10):2602–2606. [PubMed] [Google Scholar]
  48. Welsh J. B., Sapinoso L. M., Su A. I., Kern S. G., Wang-Rodriguez J., Moskaluk C. A., Frierson H. F., Jr, Hampton G. M. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res. 2001 Aug 15;61(16):5974–5978. [PubMed] [Google Scholar]
  49. Wu Faye, Yan Wei, Pan Junliang, Morser John, Wu Qingyu. Processing of pro-atrial natriuretic peptide by corin in cardiac myocytes. J Biol Chem. 2002 Mar 7;277(19):16900–16905. doi: 10.1074/jbc.M201503200. [DOI] [PubMed] [Google Scholar]
  50. Wu Q., Yu D., Post J., Halks-Miller M., Sadler J. E., Morser J. Generation and characterization of mice deficient in hepsin, a hepatic transmembrane serine protease. J Clin Invest. 1998 Jan 15;101(2):321–326. doi: 10.1172/JCI1617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Xiong J. W., Leahy A., Lee H. H., Stuhlmann H. Vezf1: A Zn finger transcription factor restricted to endothelial cells and their precursors. Dev Biol. 1999 Feb 15;206(2):123–141. doi: 10.1006/dbio.1998.9144. [DOI] [PubMed] [Google Scholar]
  52. Yamaguchi Nozomi, Okui Akira, Yamada Tatsuo, Nakazato Hiroshi, Mitsui Shinichi. Spinesin/TMPRSS5, a novel transmembrane serine protease, cloned from human spinal cord. J Biol Chem. 2001 Dec 12;277(9):6806–6812. doi: 10.1074/jbc.M103645200. [DOI] [PubMed] [Google Scholar]
  53. Yamaoka K., Masuda K., Ogawa H., Takagi K., Umemoto N., Yasuoka S. Cloning and characterization of the cDNA for human airway trypsin-like protease. J Biol Chem. 1998 May 8;273(19):11895–11901. doi: 10.1074/jbc.273.19.11895. [DOI] [PubMed] [Google Scholar]
  54. Yan W., Sheng N., Seto M., Morser J., Wu Q. Corin, a mosaic transmembrane serine protease encoded by a novel cDNA from human heart. J Biol Chem. 1999 May 21;274(21):14926–14935. doi: 10.1074/jbc.274.21.14926. [DOI] [PubMed] [Google Scholar]
  55. Yan W., Wu F., Morser J., Wu Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8525–8529. doi: 10.1073/pnas.150149097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Yu I. S., Chen H. J., Lee Y. S., Huang P. H., Lin S. R., Tsai T. W., Lin S. W. Mice deficient in hepsin, a serine protease, exhibit normal embryogenesis and unchanged hepatocyte regeneration ability. Thromb Haemost. 2000 Nov;84(5):865–870. [PubMed] [Google Scholar]
  57. Zacharski L. R., Ornstein D. L., Memoli V. A., Rousseau S. M., Kisiel W. Expression of the factor VII activating protease, hepsin, in situ in renal cell carcinoma. Thromb Haemost. 1998 Apr;79(4):876–877. [PubMed] [Google Scholar]
  58. von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985 Jul 5;184(1):99–105. doi: 10.1016/0022-2836(85)90046-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES