Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 1;373(Pt 3):733–738. doi: 10.1042/BJ20030513

X-ray structure of a putative reaction intermediate of 5-aminolaevulinic acid dehydratase.

Peter T Erskine 1, Leighton Coates 1, Danica Butler 1, James H Youell 1, Amanda A Brindley 1, Steve P Wood 1, Martin J Warren 1, Peter M Shoolingin-Jordan 1, Jonathan B Cooper 1
PMCID: PMC1223560  PMID: 12777167

Abstract

The X-ray structure of yeast 5-aminolaevulinic acid dehydratase, in which the catalytic site of the enzyme is complexed with a putative cyclic intermediate composed of both substrate moieties, has been solved at 0.16 nm (1.6 A) resolution. The cyclic intermediate is bound covalently to Lys(263) with the amino group of the aminomethyl side chain ligated to the active-site zinc ion in a position normally occupied by a catalytic hydroxide ion. The cyclic intermediate is catalytically competent, as shown by its turnover in the presence of added substrate to form porphobilinogen. The findings, combined with those of previous studies, are consistent with a catalytic mechanism in which the C-C bond linking both substrates in the intermediate is formed before the C-N bond.

Full Text

The Full Text of this article is available as a PDF (234.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boese Q. F., Spano A. J., Li J. M., Timko M. P. Aminolevulinic acid dehydratase in pea (Pisum sativum L.). Identification of an unusual metal-binding domain in the plant enzyme. J Biol Chem. 1991 Sep 15;266(26):17060–17066. [PubMed] [Google Scholar]
  2. Chaudhry A. G., Jordan P. M. Stereochemical studies on the formation of porphobilinogen. Biochem Soc Trans. 1976;4(4):760–761. doi: 10.1042/bst0040760. [DOI] [PubMed] [Google Scholar]
  3. Doss M., von Tiepermann R., Schneider J., Schmid H. New type of hepatic porphyria with porphobilinogen synthase defect and intermittent acute clinical manifestation. Klin Wochenschr. 1979 Oct 15;57(20):1123–1127. doi: 10.1007/BF01481493. [DOI] [PubMed] [Google Scholar]
  4. Erskine P. T., Coates L., Newbold R., Brindley A. A., Stauffer F., Wood S. P., Warren M. J., Cooper J. B., Shoolingin-Jordan P. M., Neier R. The X-ray structure of yeast 5-aminolaevulinic acid dehydratase complexed with two diacid inhibitors. FEBS Lett. 2001 Aug 17;503(2-3):196–200. doi: 10.1016/s0014-5793(01)02721-1. [DOI] [PubMed] [Google Scholar]
  5. Erskine P. T., Newbold R., Brindley A. A., Wood S. P., Shoolingin-Jordan P. M., Warren M. J., Cooper J. B. The x-ray structure of yeast 5-aminolaevulinic acid dehydratase complexed with substrate and three inhibitors. J Mol Biol. 2001 Sep 7;312(1):133–141. doi: 10.1006/jmbi.2001.4947. [DOI] [PubMed] [Google Scholar]
  6. Erskine P. T., Newbold R., Roper J., Coker A., Warren M. J., Shoolingin-Jordan P. M., Wood S. P., Cooper J. B. The Schiff base complex of yeast 5-aminolaevulinic acid dehydratase with laevulinic acid. Protein Sci. 1999 Jun;8(6):1250–1256. doi: 10.1110/ps.8.6.1250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Erskine P. T., Norton E., Cooper J. B., Lambert R., Coker A., Lewis G., Spencer P., Sarwar M., Wood S. P., Warren M. J. X-ray structure of 5-aminolevulinic acid dehydratase from Escherichia coli complexed with the inhibitor levulinic acid at 2.0 A resolution. Biochemistry. 1999 Apr 6;38(14):4266–4276. doi: 10.1021/bi982137w. [DOI] [PubMed] [Google Scholar]
  8. Erskine P. T., Senior N., Awan S., Lambert R., Lewis G., Tickle I. J., Sarwar M., Spencer P., Thomas P., Warren M. J. X-ray structure of 5-aminolaevulinate dehydratase, a hybrid aldolase. Nat Struct Biol. 1997 Dec;4(12):1025–1031. doi: 10.1038/nsb1297-1025. [DOI] [PubMed] [Google Scholar]
  9. Erskine P. T., Senior N., Maignan S., Cooper J., Lambert R., Lewis G., Spencer P., Awan S., Warren M., Tickle I. J. Crystallization of 5-aminolaevulinic acid dehydratase from Escherichia coli and Saccharomyces cerevisiae and preliminary X-ray characterization of the crystals. Protein Sci. 1997 Aug;6(8):1774–1776. doi: 10.1002/pro.5560060820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frankenberg N., Erskine P. T., Cooper J. B., Shoolingin-Jordan P. M., Jahn D., Heinz D. W. High resolution crystal structure of a Mg2+-dependent porphobilinogen synthase. J Mol Biol. 1999 Jun 11;289(3):591–602. doi: 10.1006/jmbi.1999.2808. [DOI] [PubMed] [Google Scholar]
  11. Frère Frederic, Schubert Wolf-Dieter, Stauffer Frédéric, Frankenberg Nicole, Neier Reinhard, Jahn Dieter, Heinz Dirk W. Structure of porphobilinogen synthase from Pseudomonas aeruginosa in complex with 5-fluorolevulinic acid suggests a double Schiff base mechanism. J Mol Biol. 2002 Jul 5;320(2):237–247. doi: 10.1016/S0022-2836(02)00472-2. [DOI] [PubMed] [Google Scholar]
  12. Gibbs P. N., Jordan P. M. Identification of lysine at the active site of human 5-aminolaevulinate dehydratase. Biochem J. 1986 Jun 1;236(2):447–451. doi: 10.1042/bj2360447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jaffe E. K., Markham G. D., Rajagopalan J. S. 15N and 13C NMR studies of ligands bound to the 280,000-dalton protein porphobilinogen synthase elucidate the structures of enzyme-bound product and a Schiff base intermediate. Biochemistry. 1990 Sep 11;29(36):8345–8350. doi: 10.1021/bi00488a021. [DOI] [PubMed] [Google Scholar]
  14. Jaffe E. K. Porphobilinogen synthase, the first source of heme's asymmetry. J Bioenerg Biomembr. 1995 Apr;27(2):169–179. doi: 10.1007/BF02110032. [DOI] [PubMed] [Google Scholar]
  15. Jaffe Eileen K. An unusual phylogenetic variation in the metal ion binding sites of porphobilinogen synthase. Chem Biol. 2003 Jan;10(1):25–34. doi: 10.1016/s1074-5521(02)00296-x. [DOI] [PubMed] [Google Scholar]
  16. Jordan P. M., Gibbs P. N. Mechanism of action of 5-aminolaevulinate dehydratase from human erythrocytes. Biochem J. 1985 May 1;227(3):1015–1020. doi: 10.1042/bj2271015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jordan P. M. Highlights in haem biosynthesis. Curr Opin Struct Biol. 1994 Dec;4(6):902–911. doi: 10.1016/0959-440x(94)90273-9. [DOI] [PubMed] [Google Scholar]
  18. Kervinen J., Jaffe E. K., Stauffer F., Neier R., Wlodawer A., Zdanov A. Mechanistic basis for suicide inactivation of porphobilinogen synthase by 4,7-dioxosebacic acid, an inhibitor that shows dramatic species selectivity. Biochemistry. 2001 Jul 27;40(28):8227–8236. doi: 10.1021/bi010656k. [DOI] [PubMed] [Google Scholar]
  19. MAUZERALL D., GRANICK S. The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J Biol Chem. 1956 Mar;219(1):435–446. [PubMed] [Google Scholar]
  20. Simons T. J. The affinity of human erythrocyte porphobilinogen synthase for Zn2+ and Pb2+. Eur J Biochem. 1995 Nov 15;234(1):178–183. doi: 10.1111/j.1432-1033.1995.178_c.x. [DOI] [PubMed] [Google Scholar]
  21. Warren M. J., Cooper J. B., Wood S. P., Shoolingin-Jordan P. M. Lead poisoning, haem synthesis and 5-aminolaevulinic acid dehydratase. Trends Biochem Sci. 1998 Jun;23(6):217–221. doi: 10.1016/s0968-0004(98)01219-5. [DOI] [PubMed] [Google Scholar]
  22. Warren M. J., Scott A. I. Tetrapyrrole assembly and modification into the ligands of biologically functional cofactors. Trends Biochem Sci. 1990 Dec;15(12):486–491. doi: 10.1016/0968-0004(90)90304-t. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES